The effect of heat treatment on characteristics of the gamma prime phase and hardness of the nickel-based superalloy Rene®80

2019 ◽  
Vol 227 ◽  
pp. 46-55 ◽  
Author(s):  
Mohammad Mehdi Barjesteh ◽  
Seyed Mehdi Abbasi ◽  
Karim Zangeneh Madar ◽  
Kourosh Shirvani
2017 ◽  
Vol 891 ◽  
pp. 420-425
Author(s):  
Sureerat Polsilapa ◽  
Aimamorn Promboopha ◽  
Panyawat Wangyao

Cast nickel based superalloy, Grade Inconel 738, is a material for turbine blades. Its rejuvenation heat treatment usually consist of solution treatment condition with temperature range of 1125-1205 oC for 2-6 hours. Then it is following with double aging process including primary aging at 1055oC for 1 hour and secondary aging at 845oC for 24 hours. However, the various selected temperature dropping program were performed during solution treatment to simulate the possible error of heating furnace. The maximum number of temperature dropping during solution treatment is varied from 1-3 times From all obtained results, the various temperature dropping during solution treatment conditions showed extremely the significant effect on the final rejuvenated microstructures and long-term gamma prime stability after heating at temperature of 900oC for 200 hours.


2019 ◽  
Author(s):  
Christina Maria Katsari ◽  
Stephen Yue ◽  
Andrew Wessman

Abstract Rene 65 is a nickel-based superalloy used in aerospace components such as turbine blades and disks. The microstructure in the as received condition of the superalloy consists of ~40% volume fraction of gamma prime precipitates, which gives such a high strength that thermomechanical processing is problematic. The goal of this study was to develop a heat treatment for manufacturing of Rene 65 components by changing the size distribution and volume fraction of those precipitates and lowering the strength. Gamma prime in this alloy is observed in three sizes, ranging from a few μm to tens of nm. For the design of the heat treatments, Design of Experiments (DOE) has been used; more specifically Taguchi’s L8 matrix. The four factors that are examined are cooling rate, hold temperature, hold time and cooling method to room temperature. The levels of the factors were two (high and low) with replication. Microstructures were characterized by Scanning Electron Microscopy and mechanical properties by Vickers microhardness testing.


2015 ◽  
Vol 79 (4) ◽  
pp. 203-209 ◽  
Author(s):  
Takaoki Takeshita ◽  
Yoshinori Murata ◽  
Nobuhiro Miura ◽  
Yoshihiro Kondo ◽  
Yuhki Tsukada ◽  
...  

2019 ◽  
Vol 61 (7) ◽  
pp. 609-617 ◽  
Author(s):  
Arpaporn Nararak ◽  
Panyawat Wangyao ◽  
Tanaporn Rojhirunsakool ◽  
Gobboon Lothongkum

Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract INCONEL alloy 718SPF is an age-hardenable austenitic material whose strength is largely dependent on the precipitation of a gamma prime phase following heat treatment. The base alloy, however, possesses two-essential characteristics for super-plastic forming; grain size stability over time and temperature; and a combination of low flow stress and significant ductility. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low and high temperature performance. Filing Code: Ni-471. Producer or source: Inco Alloys International Inc.


2021 ◽  
Vol 63 (2) ◽  
pp. 105-112
Author(s):  
Chuleeporn Paa-rai ◽  
Gobboon Lothongkum ◽  
Panyawat Wangyao

Abstract IN-738 turbine blade samples, deteriorated after long term service at high temperatures, were solution heat-treated at two temperatures, 1398 K and 1473 K, for 7.2 ks. Subsequently, the samples were cooled down in different atmospheres, in air and in furnace, for the purpose of studying the effects of different cooling media (rates) on the restored microstructures. Following this, the samples were aged at 1118 K for 43.2 ks and 86.4 ks in order to determine the characteristic of re-precipitated gamma prime particles. A scanning electron microscope (SEM) and ImageJ analysis software were used. The results show that the cooling in air provided gamma prime particles re-precipitating in spherical shape while the cooling in a furnace resulted in coarse gamma prime particles re-precipitating in irregular shape. The samples solutionized at 1398 K for 7.2 ks cooled down in air and then aging at 1118 K provided bimodal microstructure, while the sample solutionized at 1473 K for 7.2 ks, followed by air cooling and aging at 1118 K generated unimodal γ’ precipitation in spherical shape. Cooling in a furnace provides coarse γ’ recipitated particles in more irregular shape for the both solutionizing temperatures studied here. Cooling in a furnace provides coarse γ’ precipitated particles in more irregular shape for the both solutionizing temperatures studied here.


2013 ◽  
Vol 578 ◽  
pp. 454-464 ◽  
Author(s):  
Chunlei Qiu ◽  
Xinhua Wu ◽  
Junfa Mei ◽  
Paul Andrews ◽  
Wayne Voice

Sign in / Sign up

Export Citation Format

Share Document