On Heat Treatment and Surface Characterization of Spark Eroded Nickel-Based Superalloy Developed by Additive Manufacturing

2019 ◽  
Vol 73 (2) ◽  
pp. 429-439
Author(s):  
M. Adam Khan ◽  
Kapil Gupta
2020 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Satrio Herbirowo ◽  
Vinda Puspasari ◽  
M. Iqbal Primatama ◽  
Hendrik Hendrik ◽  
I Nyoman Gede Putrayasa Astawa ◽  
...  

This research was aimed to do heat treatment of austemper carburization and investigate the effect of various cooling media on mechanical properties and microstructure of Cr-Mo alloy lateritic steel. Heat treatment was conducted to austenisation temperature at 950o C for 1 hour and austemper carburization at 400o C for 1 hour. Variation of cooling media included air blowing for 1 hour, water, and furnace cooling for 24 hours. Hardness and impact test were done using Hardness Rockwell and Charpy methods. Microstructure was observed using optical microscope. Fracture surface characterization was using SEM-EDX. The results showed the highest hardness of 65.48 HRC in sample that cooled by air blowing for 1 hour. The microstructure of this sample showed phases of ferrite, pearlite and martensite which causing higher hardness. The highest impact strength of 20 Joule took place in the furnace cooled sample. Characterization of the fracture surface using SEM-EDX showed dimple of ductile fractures.Penelitian ini bertujuan untuk melakukan proses perlakukan panas karburisasi austemper dan mempelajari pengaruh media pendinginan terhadap sifat mekanik dan struktur mikro baja laterit paduan Cr-Mo. Perlakuan panas yang dilakukan yaitu pemanasan sampel pada temperatur austenisasi (950o C) selama 1 jam dan proses karburisasi austemper dengan media serbuk arang halus pada temperatur 400o C selama 1 jam. Variasi pendinginan yang digunakan yaitu air blowing (semburan udara) selama 1 jam, air dan tungku selama 24 jam. Pengujian kekerasan dilakukan dengan metode Rockwell Hardness dan pengujian impak dilakukan dengan metode charpy. Karakterisasi struktur mikro dilakukan dengan proses metalografi dan mikroskop optik. Karakterisasi permukaan patahan pengujian impak dilakukan dengan SEM-EDX. Hasil penelitian ini menunjukkan nilai kekerasan tertinggi yaitu 65,48 HRC terjadi pada sampel dengan air blowing selama 1 jam. Struktur mikro sampel tersebut menunjukkan adanya fasa ferit, perlit dan martensit yang membuat sampel menjadi keras. Nilai kekuatan impak tertinggi sebesar 20 Joule terjadi pada sampel dengan pendinginan di dalam tungku selama 24 jam. Karakterisasi permukaan patahannya menggunakan SEM-EDX menunjukkan adanya dimple dari patah ulet.


2019 ◽  
Vol 813 ◽  
pp. 435-440
Author(s):  
Maurizio Troiano ◽  
Alessia Teresa Silvestri ◽  
Fabio Scherillo ◽  
Andrea El Hassanin ◽  
Roberto Solimene ◽  
...  

The physical behavior of metal powders during laser-based additive manufacturing processes has been investigated. In particular, an experimental campaign of direct metal deposition has been carried out to evaluate the effect of the laser power and spot size on the powder/substrate interaction and on the surface morphology of the final piece. A fast-camera has been used to evaluate the interaction phenomena during the printing process, while confocal microscopy has been carried out to measure the surface morphology of the samples. Results highlighted that increasing the laser power and laser spot size, the particle impact velocity is about constant, while the powder/laser/substrate interaction zone increases. As a consequence, the mean thickness increases, as confirmed by surface characterization.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4930
Author(s):  
Jinghao Xu ◽  
Hans Gruber ◽  
Ru Lin Peng ◽  
Johan Moverare

An experimental printable γ′-strengthened nickel-based superalloy, MAD542, is proposed. By process optimization, a crack-free component with less than 0.06% defect was achieved by laser powder bed fusion (LPBF). After post-processing by solution heat treatment, a recrystallized structure was revealed, which was also associated with the formation of annealing twins. After the aging treatment, 60–65% γ′ precipitates were obtained with a cuboidal morphology. The success of printing and post-processing the new MAD542 superalloy may give new insights into alloy design approaches for additive manufacturing.


2021 ◽  
Vol 871 ◽  
pp. 32-39
Author(s):  
Zhen Wei Wei ◽  
Chang Kui Liu ◽  
Yao Li ◽  
Bing Qing Chen

To study quantitatively the effect of heat treatment on the microstructure, composition and mechanical property in a new single crystal nickel-based superalloy for industrial gas turbine (IGT) applications, the eutectic fraction, carbide fraction, and the fraction, size, shape and distribution of the γ ́ phase was characterized by quantitative metallographic method, the evolution of chemical composition and hardness between core and inter dendrite was tested through EMPA and nanoindentation. The experimental results indicate that: The eutectic fraction decreases from (0.52±0.08) % to (0.03±0.01) %. The carbides fraction decreases from (0.23±0.04) % to (0.12±0.03) %, and Feret ratio decreases from 3.21±2.54 to 2.14±0.98. The γ ́ fraction increases from (55.66±4.18) % to (73.78±3.24) % in core dendritic region, from (64.82±1.44) % to (70.11±3.10) % in inter dendritic region. The γ ́-size is 406±111(nm) in core dendritic region and 918±384(nm) in inter dendritic region before heat treatment, 359±69(nm) in core dendritic region and 361±57(nm) in inter dendritic region after heat treatment. The γ ́-cuboidal degree is 1.08±0.20 in core dendritic region and 1.14±0.23 in inter dendritic region before heat treatment, 1.08±0.19 in core dendritic region and 1.02±0.14 in inter dendritic region after heat treatment. The solidification segregation coefficient of main segregation elements, such as Re, W, Hf, Ta, Al, and Mo, is closer to 1, with an average decrease of 27% after heat treatment. The hardness and modulus increase in core and inter dendritic, and their inhomogeneity is reduced between cores and inter dendritic. The improvement of properties result from the improvement of size uniformity and cuboidal degree of γ ́, and the reduction of carbides and eutectic through element homogeneity during heat treatment. The solidification segregation coefficient of main segregation elements, such as Re, W, Hf, Ta, Al, and Mo, is closer to 1, with an average decrease of 27% after heat treatment. With the addition of refractory elements, some elements partition to the dendrite core, while other elements tend to accumulate in the interdendritic liquid and then solidify as the interdendritic and eutectic regions during solidification. The hardness and modulus increase in core and inter dendritic, and their inhomogeneity is reduced between cores and inter dendritic. The improvement of properties result from the improvement of size uniformity and cuboidal degree of γ ́, and the reduction of carbides and eutectic through element homogeneity during heat treatment.


Author(s):  
Akhil V ◽  
Arunachalam N ◽  
Raghav G ◽  
Sivasrinivasu Devadula

The Selective Laser Melting (SLM) process based additive manufacturing has wide applications in medical, aerospace, defense, and automotive industries. To qualify the components for certain tribological applications, the characterization of surface texture is very important. But the applicability of traditional methods and parameters to characterize the surface texture were under evaluation. As the nature manufacturing the components were very different and complex, the unconventional surface characterization methods also under evaluation to reveal much more meaningful information. This study demonstrates the surface characterization of Ti-6Al-4V SLM components using fractal analysis of the surface images. The computed fractal dimension using the Fourier transform method showed a strong correlation of more than 0.8 with the measured 3D surface roughness parameters. The change in anisotropic nature of the surface images with the process parameter variation is studied and found that the surface textures showed a weaker anisotropic nature at lower laser power ranges, high scanning speed, and high hatch distance values. The lacunarity analysis is carried out using the gliding box algorithm to study the homogeneity nature of the surface texture and found that the surface texture is more homogeneous at higher surface roughness conditions. The study results can be utilized for the development of a quick, low-cost surface monitoring system in real-time for additive manufacturing industries.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


1986 ◽  
Vol 47 (C7) ◽  
pp. C7-133-C7-138 ◽  
Author(s):  
N. SANKARRAMAN ◽  
Ph. NIEDERMANN ◽  
R. J. NOER ◽  
O. FISCHER

Sign in / Sign up

Export Citation Format

Share Document