Fast and efficient single step synthesis of modified magnetic nanocatalyst for catalytic reduction of 4-nitrophenol

Author(s):  
Megha Saxena ◽  
Reena Saxena
RSC Advances ◽  
2015 ◽  
Vol 5 (25) ◽  
pp. 19248-19254 ◽  
Author(s):  
Hong-Ling Lin ◽  
Nga-Lai Sou ◽  
Genin Gary Huang

A single step preparation of recyclable silver nanocatalysts for catalytic reduction of nitroarenes with high efficiency.


ACS Omega ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 3340-3347 ◽  
Author(s):  
Hui-Fen Chen ◽  
Mei-Jou Hung ◽  
Tzu-Hsin Hung ◽  
Ya-Wen Tsai ◽  
Chun-Wei Su ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1999
Author(s):  
Kaushik Kumar Bharadwaj ◽  
Bijuli Rabha ◽  
Siddhartha Pati ◽  
Bhabesh Kumar Choudhury ◽  
Tanmay Sarkar ◽  
...  

The green synthesis of silver nanoparticles (AgNPs) has currently been gaining wide applications in the medical field of nanomedicine. Green synthesis is one of the most effective procedures for the production of AgNPs. The Diospyros malabarica tree grown throughout India has been reported to have antioxidant and various therapeutic applications. In the context of this, we have investigated the fruit of Diospyros malabarica for the potential of forming AgNPs and analyzed its antibacterial and anticancer activity. We have developed a rapid, single-step, cost-effective and eco-friendly method for the synthesis of AgNPs using Diospyros malabarica aqueous fruit extract at room temperature. The AgNPs began to form just after the reaction was initiated. The formation and characterization of AgNPs were confirmed by UV-Vis spectrophotometry, XRD, FTIR, DLS, Zeta potential, FESEM, EDX, TEM and photoluminescence (PL) methods. The average size of AgNPs, in accordance with TEM results, was found to be 17.4 nm. The antibacterial activity of the silver nanoparticles against pathogenic microorganism strains of Staphylococcus aureus and Escherichia coli was confirmed by the well diffusion method and was found to inhibit the growth of the bacteria with an average zone of inhibition size of (8.4 ± 0.3 mm and 12.1 ± 0.5 mm) and (6.1 ± 0.7 mm and 13.1 ± 0.5 mm) at 500 and 1000 µg/mL concentrations of AgNPs, respectively. The anticancer effect of the AgNPs was confirmed by MTT assay using the U87-MG (human primary glioblastoma) cell line. The IC50 value was found to be 58.63 ± 5.74 μg/mL. The results showed that green synthesized AgNPs exhibited significant antimicrobial and anticancer potency. In addition, nitrophenols, which are regarded as priority pollutants by the United States Environmental Protection Agency (USEPA), can also be catalytically reduced to less toxic aminophenols by utilizing synthesized AgNPs. As a model reaction, AgNPs are employed as a catalyst in the reduction of 4-nitrophenol to 4-aminophenol, which is an intermediate for numerous analgesics and antipyretic drugs. Thus, the study is expected to help immensely in the pharmaceutical industries in developing antimicrobial drugs and/or as an anticancer drug, as well as in the cosmetic and food industries.


2021 ◽  
Vol 35 (1) ◽  
pp. 197-206
Author(s):  
F. Ahmad ◽  
F. Nawaz ◽  
M. Khan ◽  
W. Munib ◽  
S. W, Hassan ◽  
...  

Biomolecules present in the plant extracts have potential to reduce metal ions to nanoclusters by a single-step green synthesis approach. In the current study, we have synthesized the silver nanoclusters (AgNCs) from a medicinal plant, Melia azedarach and studied their catalytic activity toward the reduction of 4-nitophenol to 4-aminophenol and organic dyes. Morover, the phytochemical analysis of the plant extract was carried out in order to determine the bioactive compounds present in it. Metallic nature of the synthesized AgNCs was verified by X-ray diffraction study, while their morphology and size of was confirmed by transmission electron microscopy and Zetasizer, respectively. The study revealed that they were 56±2 nm in size and formed clusters. Fourier transformed infrared spectroscopy gives information about the different functional groups present in synthesized these NCs. Furthermore, the important catalytic applications, such as catalytic reduction of 4-nitrophenol in the presence of mild reducing agent NaBH4 and the catalytic degradation of organic dyes was monitored by FTIR. Therefore, these results indicate that the obtained nanomaterials have important applications in industrial areas.                     KEY WORDS: Green synthesis, Silver nanoclusters, Catalytic reduction, Characterization   Bull. Chem. Soc. Ethiop. 2021, 35(1), 197-206. DOI: https://dx.doi.org/10.4314/bcse.v35i1.17


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Van-Dat Doan ◽  
Anh Tai Thieu ◽  
Thanh-Danh Nguyen ◽  
Van-Cuong Nguyen ◽  
Xuan-Thang Cao ◽  
...  

This work describes a simple single-step method for green synthesis of colloidal gold nanoparticles (AuNPs) using Litsea cubeba (LC) fruit extract as a reducing as well as stabilizing agent simultaneously. Major parameters affecting the formation of LC-AuNPs, including gold ion concentration, reaction time, and reaction temperature were optimized using ultraviolet-visible (UV-Vis) measurements at a characteristic maximum absorbance of 535 nm. The functional groups responsible for reducing gold ions and capping AuNPs were examined by Fourier-transform infrared (FTIR) spectroscopy. Powder X-ray diffraction (XRD) analysis revealed the crystalline nature of AuNPs. Transmission electron microscopy (TEM) measurements showed that the biosynthesized LC-AuNPs were mostly spherical with an average size of 8-18 nm. The nanoparticles also demonstrated excellent ultrarapid catalytic activity for the complete reduction of 4-nitrophenol to p-aminophenol in the presence of NaBH4 within 10 min with a reaction rate constant of 0.348 min-1.


2020 ◽  
Vol 10 (16) ◽  
pp. 5525-5534 ◽  
Author(s):  
Jialiang Gu ◽  
Bingjun Zhu ◽  
Rudi Duan ◽  
Yan Chen ◽  
Shaoxin Wang ◽  
...  

MnOx–FeOx-Loaded silicalite-1 catalysts exhibit high NOx conversion at low temperatures.


2020 ◽  
Vol 7 (21) ◽  
pp. 3515-3520
Author(s):  
Wubing Yao ◽  
Jiali Wang ◽  
Aiguo Zhong ◽  
Shiliang Wang ◽  
Yinlin Shao

The selective catalytic reduction of amides to value-added amine products is a desirable but challenging transformation.


Sign in / Sign up

Export Citation Format

Share Document