scholarly journals Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP)

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1999
Author(s):  
Kaushik Kumar Bharadwaj ◽  
Bijuli Rabha ◽  
Siddhartha Pati ◽  
Bhabesh Kumar Choudhury ◽  
Tanmay Sarkar ◽  
...  

The green synthesis of silver nanoparticles (AgNPs) has currently been gaining wide applications in the medical field of nanomedicine. Green synthesis is one of the most effective procedures for the production of AgNPs. The Diospyros malabarica tree grown throughout India has been reported to have antioxidant and various therapeutic applications. In the context of this, we have investigated the fruit of Diospyros malabarica for the potential of forming AgNPs and analyzed its antibacterial and anticancer activity. We have developed a rapid, single-step, cost-effective and eco-friendly method for the synthesis of AgNPs using Diospyros malabarica aqueous fruit extract at room temperature. The AgNPs began to form just after the reaction was initiated. The formation and characterization of AgNPs were confirmed by UV-Vis spectrophotometry, XRD, FTIR, DLS, Zeta potential, FESEM, EDX, TEM and photoluminescence (PL) methods. The average size of AgNPs, in accordance with TEM results, was found to be 17.4 nm. The antibacterial activity of the silver nanoparticles against pathogenic microorganism strains of Staphylococcus aureus and Escherichia coli was confirmed by the well diffusion method and was found to inhibit the growth of the bacteria with an average zone of inhibition size of (8.4 ± 0.3 mm and 12.1 ± 0.5 mm) and (6.1 ± 0.7 mm and 13.1 ± 0.5 mm) at 500 and 1000 µg/mL concentrations of AgNPs, respectively. The anticancer effect of the AgNPs was confirmed by MTT assay using the U87-MG (human primary glioblastoma) cell line. The IC50 value was found to be 58.63 ± 5.74 μg/mL. The results showed that green synthesized AgNPs exhibited significant antimicrobial and anticancer potency. In addition, nitrophenols, which are regarded as priority pollutants by the United States Environmental Protection Agency (USEPA), can also be catalytically reduced to less toxic aminophenols by utilizing synthesized AgNPs. As a model reaction, AgNPs are employed as a catalyst in the reduction of 4-nitrophenol to 4-aminophenol, which is an intermediate for numerous analgesics and antipyretic drugs. Thus, the study is expected to help immensely in the pharmaceutical industries in developing antimicrobial drugs and/or as an anticancer drug, as well as in the cosmetic and food industries.

2021 ◽  
Author(s):  
Shirisha A ◽  
ANUMOLU VIJAYA KUMAR ◽  
Laxman Chatlod R ◽  
Shashi Kumar M ◽  
Krishnaiah N ◽  
...  

Abstract The present study mainly deals with the green synthesis, characterization and evaluation of antibacterial properties of silver nanoparticles (AgNPs) synthesized by using the leaf extract of Moringa oleifera and fruit extract of Tamarindus indica. In this study for synthesis of silver nanoparticles different ratios of 1mM silver nitrate and Moringa oleifera leaf extract i.e, 95:5, 90:10 and 85: 15 was taken in conical flask and kept for one 1 hr at 25 0 c on magnetic stirrer, out of which 90:10 ratio was selected for further study based on highest peak, good size and stability. Tamarindus indica fruit extract was added to silver nitrate solution till the colour of the solution changes from light brown to chocolate brownish colour. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, Zeta potential, size distribution by intensity. The absorption spectrum of the silver nano solution prepared by using Moringa oleifera and Tamarindus indica fruit extract showed a surface plasmon absorption band with maximum of 420 nm and 430 nm respectively indicating the presence of silver nanoparticles. The zeta value of silver nanoparticles synthesized from Moringa oleifera and Tamarindus indica fruit extract was -12.5 mV and -15.5 mV, size of 110.2 nm and 130.2 nm respectively. The antibacterial efficacy of nanosilver was checked by agar well diffusion method, and the silver nanoparticles showed effective antibacterial activity against Staphylococcus aureus.


Author(s):  
S J Mane Gavade ◽  
G H Nikam ◽  
R S Dhabbe ◽  
S R Sabale ◽  
B V Tamhankar ◽  
...  

2022 ◽  
Vol 1247 ◽  
pp. 131361
Author(s):  
Tanmoy Dutta ◽  
Swapan Kumar Chowdhury ◽  
Narendra Nath Ghosh ◽  
Asoke P. Chattopadhyay ◽  
Mahuya Das ◽  
...  

Author(s):  
Sajib Aninda Dhar ◽  
Rashedul Alam Chowdhury ◽  
Shaon Das ◽  
Md. Khalid Nahian ◽  
Dipa Islam ◽  
...  

Author(s):  
S C Joshi ◽  
Utkarsh Kaushik ◽  
Aproova Upadhyaya ◽  
Priyanka Sharma

ABSTRACTObjective: The synthesis of nanoparticles from biological processes is evolving a new era of research interests in nanotechnology. Silver nanoparticlesare usually synthesized by chemicals and physical method, which are quite toxic and flammable in nature. This study deals with an environmentfriendly biosynthesis process of antibacterial silver nanoparticles using Momordica charantia fruit.Methods: AgNO3 (5 mM) was allowed to react with fruit extract of M. charantia. Biosynthesis of AgNPs was optimized by changing temperature,pH, and solvent. The silver nanoparticles so formed were characterized using ultraviolet-visible (UV-VIS) spectroscopy, Fourier transform infraredspectroscopy (FTIR), dynamic light scattering (DLS), atomic force microscope (AFM), and scanning electron microscopy (SEM).Results: UV-VIS spectra show absorption peak between 420 and 430 nm. The FTIR analysis showed the alcoholic, lactam, and nitro group presentin the plant extract, which were responsible for the reduction in AgNPs. The SEM images showed the size distribution of the nanoparticles and theaverage size was found to be 50-100 nm. By DLS analysis and AFM analysis, average sizes of the silver nanoparticles were of 150 nm. The results ofthese analyses confirmed the formation of silver nanoparticles. Silver nanoparticles were tested against Bacillus cereus and Staphylococcus epidermidisstrains using disc diffusion method and were found to be effective.Conclusion: Silver nanoparticles so synthesized in this study using fruit extract of M. charantia are simple, easy, and effective technique of nanoparticlesproduction.Keywords: Silver nanoparticles, Momordica charantia, Optimization, Antibacterial, Atomic force microscope, Scanning electron microscopy.


Author(s):  
Dr. Guru Kumar Dugganaboyana ◽  
Ramya Jayendra ◽  
Arpitha Narayan ◽  
Meghana Siddappa Konasur

Plant based synthesis of nanoparticles has generated worldwide interest because of cost-effectiveness, eco-friendly nature and abundance of applications. In the present investigation , antimicrobial potential of silver nanoparticles (AgNPs) of aqueous extract of Tabebuia rosea (Bertol.) DC (T. rosea) fruit extract has been investigated. Agar disc diffusion method was used for determining the antimicrobial activity of selected aqueous fruit extract AgNPs. Phytochemical analysis of aqueous fruit extract of T. rosea fruit revealed the presence of alkaloids, flavonoids, tannins, phenols, carbohydrates, glycosides, Vitamin-C, proteins and terpenoids. AgNPs synthesis using T. rosea aqueous fruit extract and characterized by UV-Visible spectroscopy showed a peak at 420 nm and average size of 82.9 nm, FT-IR analysis, dynamic light scattering, scanning electron microscope, EDX and X-ray diffraction analysis. Evaluation of antibacterial activity of green synthesized AgNPs recorded the more potent activity against selected human bacterial pathogens. The results obtained indicated that the fruit extract of T. rosea as well as AgNPs have strong and effective antibacterial potential that provide marvelous source for the development of new drug molecules of herbal origin which may be used for the welfare of humanity.


2018 ◽  
Vol 8 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Anas Ejaz Shaikh ◽  
Kshitij Vasant Satardekar ◽  
Rummana Rehman Khan ◽  
Nanda Amit Tarte ◽  
Siddhivinayak Satyasandha Barve

Sign in / Sign up

Export Citation Format

Share Document