Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model

2012 ◽  
Vol 40 ◽  
pp. 138-147 ◽  
Author(s):  
Hongshuai Lei ◽  
Zhenqing Wang ◽  
Bo Zhou ◽  
Liyong Tong ◽  
Xiaoqiang Wang
Author(s):  
Z. W. Zhong ◽  
Chuh Mei

Abstract The present paper investigates the vibration behavior of the thermally buckled shape memory alloy (SMA) fiber-reinforced composite plates. The stress-strain relations are developed for a thin composite lamina with embedded SMA fibers. The finite element equation of motion including shape memory effect is presented. This equation can be mathematically separated into a static equation and a dynamic equation. The thermal postbuckling deflection and vibration of the thermally buckled position for SMA fiber-reinforced composite plates are determined. Due to the effects of nonlinear material properties of SMA, the vibration characteristics of thermally buckled composite plate with embedded SMA fibers are distinctly different from the one without SMA. Thermal postbuckling, natural frequencies and vibration modes for SMA reinforced composite rectangular plates are presented. Triangular plates with simply supported and clamped boundary conditions are also studied.


2019 ◽  
Vol 25 (10) ◽  
pp. 1624-1636 ◽  
Author(s):  
Hongbin Li ◽  
Taiyong Wang ◽  
Sanjay Joshi ◽  
Zhiqiang Yu

Purpose Continuous fiber-reinforced thermoplastic composites are being widely used in industry, but the fundamental understanding of their properties is still limited. The purpose of this paper is to quantitatively study the effects of carbon fiber content on the tensile strength of continuous carbon fiber-reinforced polylactic acid (CCFRPLA) fabricated through additive manufacturing using the fused deposition modeling (FDM) process. Design/methodology/approach The strength of these materials is highly dependent on the interface that forms between the continuous fiber and the plastic. A cohesive zone model is proposed as a theoretical means to understand the effect of carbon fiber on the tensile strength properties of CCFRPLA. The interface formation mechanism is explored, and the single fiber pulling-out experiment is implemented to investigate the interface properties of CCFRPLA. The fracture mechanism is also explored by using the cohesive zone model. Findings The interface between carbon fiber and PLA plays the main role in transferring external load to other fibers within CCFRPLA. The proposed model established in this paper quantitatively reveals the effects of continuous carbon fiber on the mechanical properties of CCFRPLA. The experimental results using additively manufacturing CCFRPLA provide validation and explanation of the observations based on the quantitative model that is established based on the micro-interface mechanics. Research limitations/implications The predict model is established imagining that all the fibers and PLA form a perfect interface. While in a practical situation, only the peripheral carbon fibers of the carbon fiber bundle can fully infiltrate with PLA and form a transmission interface. These internal fibers that cannot contract with PLA fully, because of the limit space of the nozzle, will not form an effective interface. Originality/value This paper theoretically reveals the fracture mechanism of CCFRPLA and provides a prediction model to estimate the tensile strength of CCFRPLA with different carbon fiber contents.


Sign in / Sign up

Export Citation Format

Share Document