Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy

2016 ◽  
Vol 101 ◽  
pp. 263-269 ◽  
Author(s):  
T. Omori ◽  
H. Iwaizako ◽  
R. Kainuma
Materia Japan ◽  
2019 ◽  
Vol 58 (3) ◽  
pp. 137-143
Author(s):  
Toshihiro Omori ◽  
Tomoe Kusama ◽  
Sumio Kise ◽  
Toyonobu Tanaka ◽  
Yoshikazu Araki ◽  
...  

Science ◽  
2013 ◽  
Vol 341 (6153) ◽  
pp. 1500-1502 ◽  
Author(s):  
T. Omori ◽  
T. Kusama ◽  
S. Kawata ◽  
I. Ohnuma ◽  
Y. Sutou ◽  
...  

2021 ◽  
pp. 111196
Author(s):  
Tian Shiwei ◽  
He Anrui ◽  
Liu Jianhua ◽  
Zhang Yefei ◽  
Yang Yonggang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Felix Clemens Ewald ◽  
Florian Brenne ◽  
Tobias Gustmann ◽  
Malte Vollmer ◽  
Philipp Krooß ◽  
...  

In order to overcome constraints related to crack formation during additive processing (laser powder bed fusion, L-BPF) of Fe-Mn-Al-Ni, the potential of high-temperature L-PBF processing was investigated in the present study. The effect of the process parameters on crack formation, grain structure, and phase distribution in the as-built condition, as well as in the course of cyclic heat treatment was examined by microstructural analysis. Optimized processing parameters were applied to fabricate cylindrical samples featuring a crack-free and columnar grained microstructure. In the course of cyclic heat treatment, abnormal grain growth (AGG) sets in, eventually promoting the evolution of a bamboo like microstructure. Testing under tensile load revealed a well-defined stress plateau and reversible strains of up to 4%.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1607
Author(s):  
Amir Hossein Baghdadi ◽  
Zainuddin Sajuri ◽  
Mohd Zaidi Omar ◽  
Armin Rajabi

Friction stir welding (FSW) is an alternative method to join aluminum (Al) alloys in a solid-state condition. However, the coarsening or dissolution of precipitation hardening phases in the welding zone causes strength reduction or softening behavior in the welded area of age-hardened Al alloys. Therefore, this research aimed to improve the mechanical properties of an FSW Al–Mg–Si alloy via post-weld heat treatment (PWHT) and the possibility of controlling the abnormal grain growth (AGG) using different welding parameters. FSW was performed with different rotational and travel speeds, and T6 heat treatment was carried out on the FSW samples as the PWHT. The results showed a decrease in the strength of the FSW samples compared with that of the base material (BM) due to the dissolution of precipitation hardening particles in the heat-affected zone. However, the emergence of AGG in the microstructure after the T6-PWHT was identified as the potential event in the microstructure of the PWHT samples. It is found that the AGG of the microstructure in similar joints of Al6061(T6) was governed by the welding parameters. The results proved that PWHT was able to increase the tensile properties of the welded samples to values comparable to that of Al6061(T6)-BM. The increased mechanical properties of the FSW joints were attributed to a proper PWHT that resulted in a homogeneous distribution of the precipitation hardening phases in the welding zones.


2020 ◽  
Vol 8 (45) ◽  
pp. 16151-16159
Author(s):  
Shaoxiong Wang ◽  
Jidong Lin ◽  
Xiaoyan Li ◽  
Jiangkun Chen ◽  
Changbin Yang ◽  
...  

Yb/Er:NaLuF4@glass with in situ reversible cubic-to-hexagonal phase transition on cyclic heat-treatment shows practical application in high-level anticounterfeiting.


Sign in / Sign up

Export Citation Format

Share Document