Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content

2016 ◽  
Vol 104 ◽  
pp. 141-151 ◽  
Author(s):  
Bandar AlMangour ◽  
Dariusz Grzesiak ◽  
Jenn-MingYang
Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 548 ◽  
Author(s):  
Jiapeng Luo ◽  
Xiao Jia ◽  
Ruinan Gu ◽  
Peng Zhou ◽  
Yongjiang Huang ◽  
...  

To fabricate metallic 316L/HA (hydroxyapatite) materials which meet the requirements of an implant’s mechanical properties and bioactivity for its function as human bone replacement, selective laser melting (SLM) has been employed in this study to prepare a 316L stainless steel matrix, which was subsequently covered with a hydroxyapatite (HA) coating using the sol-gel method. High density (98.9%) as-printed parts were prepared using a laser power of 230 W and a scanning speed of 800 mm/s. Austenite and residual acicular ferrite existed in the microstructure of the as-printed 316L stainless steel, and the sub-grain was uniform, whose primary dendrite spacing was around 0.35 μm. The as-printed 316L stainless steel showed the highest Vickers hardness, elastic modulus, and tensile strength at ~ (~ means about; same applies below unless stated otherwise) 247 HV, ~214.2 GPa, and ~730 MPa, respectively. The elongation corresponding to the highest tensile strength was ~38.8%. The 316L/HA structure, measured by the Relative Growth Rate (RGR) value, exhibited no cell cytotoxicity, and presented better biocompatibility than the uncoated as-printed and as-cast 316L samples.


2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Hannah G. Coe ◽  
Somayeh Pasebani

Spherical powders with single-mode (D50 = 36.31 µm), and bimodal (D50,L = 36.31 µm, D50,s = 5.52 µm) particle size distribution were used in selective laser melting of 316L stainless steel in nitrogen atmosphere at volumetric energy densities ranging from 35.7–116.0 J/mm3. Bimodal particle size distribution could provide up to 2% greater tap density than single-mode powder. For low laser power (107–178 W), where relative density was <99%, bimodal feedstock resulted in higher density than single-mode feedstock. However, at higher power (>203 W), the density of bimodal-fed components decreased as the energy density increased due to vaporizing of the fine powder in bimodal distributions. Size of intergranular cell regions did not appear to vary significantly between single-mode and bimodal specimens (0.394–0.531 µm2 at 81–116 J/mm3). Despite higher packing densities in powder feedstock with bimodal particle size distribution, the results of this study suggest that differences in conduction melting and vaporization points between the two primary particle sizes would limit the maximum achievable density of additively manufactured components produced from bimodal powder size distribution.


Sign in / Sign up

Export Citation Format

Share Document