scholarly journals Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology

2021 ◽  
Vol 198 ◽  
pp. 109320
Author(s):  
Hongshuai Cao ◽  
Xue Ye ◽  
Hao Li ◽  
Fugang Qi ◽  
Qing Wang ◽  
...  
Tribologia ◽  
2017 ◽  
Vol 276 (6) ◽  
pp. 5-11
Author(s):  
Jan BUJAK ◽  
Zbigniew SŁOMKA

In this paper, the AlCrTiN coatings deposited by the cathodic arc method using a plasma filtration system have been studied to determine the effect of the use of this technology on the structural, mechanical, and tribological properties of these coatings. The results of the studies have revealed that using a plasma filtering system in the cathodic arc evaporation process has a significant influence on smoothness, hardness, Young's modulus, and plasticity of the coatings. Compared to the AlTiCrN coatings that have been deposited by the standard arc cathodic process, the coatings produced by filtered method have very smooth surfaces as well as lowered values of hardness, less Young's modulus, and a lower plasticity index H3/E2. Presented properties make coatings of this type able to dissipate elastic energy that is accumulated in them during the abrasion process by plastic deformations, which in turn, results in the reduction of the tendency to create damage in the coatings and cause a limitation of wear rate. Improved tribological properties of the AlTiCrN coatings produced by filtered cathodic arc technology indicate a very promising solution for a wide range of tribological applications.


Friction ◽  
2021 ◽  
Author(s):  
Young-Jun Jang ◽  
Jae-Il Kim ◽  
WooYoung Lee ◽  
Jongkuk Kim

AbstractTetrahedral amorphous carbon (ta-C) has emerged as an excellent coating material for improving the reliability of application components under high normal loads. Herein, we present the results of our investigations regarding the mechanical and tribological properties of a 2-µm-thick multilayer ta-C coating on high-speed steel substrates. Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages (0 and 100 V or 0 and 150 V). The thickness ratio is discovered to be 1:3 for the sp2-rich and sp3-rich layers. The results show that the hardness and elastic modulus of the multilayer ta-C coatings increase with the sp3 content of the hard layer. The hardness reached approximately 37 GPa, whereas an improved toughness and a higher adhesion strength (> 29 N) are obtained. The friction performance (µ = 0.07) of the multilayer coating is similar to that of the single layer ta-C thick coating, but the wear rate (0.13 × 10−6 mm3/(N·m)) improved under a high load of 30 N. We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation (H3/E2) ratio.


2007 ◽  
Vol 14 (05) ◽  
pp. 891-897
Author(s):  
YAOHUI WANG ◽  
XU ZHANG ◽  
YUANZHI XU ◽  
XIANYING WU ◽  
HUIXING ZHANG ◽  
...  

Nanocomposite nc-TiC / a-C : H films have been deposited via filtered cathodic vacuum arc technique, employing Ti target and C 2 H 2 gas as material precursors. The composition and nanostructure of film, correlated to mechanical and tribological properties of film, are varied by changing C 2 H 2 flow rate and filter coil current. Glancing angle X-ray diffraction has been used to show that salient TiC (111) peak exists in film with grain size of order of 8–10 nm, as a function of filter coil current. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) investigations demonstrate that the nc-TiC / a-C : H films mainly contain nanocrystalline graphite and sp2-bonded carbon, both as a function of C 2 H 2 flow rate. Mechanical tests confirm that the nc-TiC / a-C : H films possess superior hardness of 33.9 GPa and elastic modulus of 237.6 GPa.


1996 ◽  
Vol 436 ◽  
Author(s):  
X. Shi ◽  
B. K. Tay ◽  
D. I. Flynn ◽  
Z. Sun

AbstractTa-C films have been deposited using FCVA technique. The hardness and Young's modulus of the films on both silicon and sapphire substrates are determined by an ultra low load depth sensing nanoindenter to examine their dependence on the carbon ion energy. An optimum ion energy around 80 to 90 eV has been found, which coincides with the energy at which the sp3 content and film density reach maximum values. At this ion energy, the hardness, modulus and critical load of a 60 nm film on sapphire exhibit maximum values of 60 GPa, 580 GPa and 7 mN, respectively, whilst the frictional coefficient shows a minimum of 0.16.


Tribology ◽  
2006 ◽  
Author(s):  
Xinchun Lu ◽  
Hui Wang ◽  
Chenhui Zhang ◽  
Jianbin Luo

Ultra-thin tetrahedral amorphous carbon (ta-C) films were deposited by the filtered cathodic vacuum arc (FCVA) technique. The thickness, structure, and topography of the films were studied by various analysis methods, such as auger electron spectroscopy (AES) depth profile, high resolution transmission electron microscope (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). A tribometer was used to investigate the tribological properties of the ta-C films. The results indicate that ta-C film with thickness less than 2 nm can be obtained by the FCVA technique. As the film thickness increases the relative intensity ratio ID/IG decreases, which means that sp3 bond in the films increases. The oxide layer cleaning procedure of silicon substrate before deposition influences the growth mode and surface roughness of the films. The ultra-thin ta-C film has the lowest friction coefficient of 0.19 and excellent anti-wear properties.


Sign in / Sign up

Export Citation Format

Share Document