Fabrication of highly ordered porous anodic alumina films in 0.75 M oxalic acid solution without using nanoimprinting

2019 ◽  
Vol 111 ◽  
pp. 24-33 ◽  
Author(s):  
Wenqiang Huang ◽  
Mengshi Yu ◽  
Shikai Cao ◽  
Lizhen Wu ◽  
Xiaoping Shen ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Yanfang Xu ◽  
Xiaojiu Li ◽  
Hao Liu ◽  
Jie Xu

A novel method for fabricating ordered double layers porous anodic alumina (DL-PAA) with controllable nanopore size was presented. Highly ordered large pore layer with interpore distance of 480 nm was fabricated in phosphoric acid solution with oxalic acid addition at the potential of 195 V and the small pore layer was fabricated in oxalic acid solution at the potential from 60 to 100 V. Experimental results show that the thickness of large pore layer is linearly correlative with anodizing time, and pore diameter is linearly correlative with pore widening time. When the anodizing potential in oxalic acid solution was adjusted from 60 to 100 V, the small pore layers with continuously tunable interpore distance from 142 to 241 nm and pore density from1.94×109to4.89×109 cm−2were obtained. And the interpore distance and the pore density of small pore layers are closely correlative with the anodizing potential. The fabricated DL-PAA templates can be widely utilized for fabrication of ordered nanomaterials, such as superhydrophobic or gecko-inspired adhesive materials and metal or semiconductor nanowires.


2020 ◽  
Vol 124 (22) ◽  
pp. 11913-11921
Author(s):  
Silvio Heinschke ◽  
Jörg J. Schneider

2017 ◽  
Vol 35 (3) ◽  
pp. 511-518 ◽  
Author(s):  
Małgorzata Norek ◽  
Maksym Łażewski

AbstractIn this work, highly ordered porous anodic alumina (PAA) with tapered pore structure and interpore distance (Dc) in the range of 550 nm to 650 nm were fabricated. To produce hexagonal close-packed pore structure a two-step process, combining anodization in etidronic acid electrolyte in the first step and high-concentration, high-temperature anodization in citric acid electrolyte in the second step, was applied. The Al pre-patterned surface obtained in the first anodization was used to produce regular tapered pore arrays by subsequent and alternating anodization in 20 wt.% citric acid solution and pore wall etching in 10 wt.% phosphoric acid solution. The height of the tapered pores was ranging between 2.5 μm and 8.0 μm for the PAA with Dc = 550 nm and Dc = 650 nm, respectively. The geometry of the obtained graded structure can be used for a production of efficient antireflective coatings operating in IR spectral region.


2016 ◽  
Vol 857 ◽  
pp. 281-285
Author(s):  
Chun Hong Voon ◽  
Bee Ying Lim ◽  
K.L. Foo ◽  
Uda Hashim ◽  
Sung Ting Sam ◽  
...  

In this study, porous anodic alumina was formed by anodizing of aluminum alloy AA6061 in oxalic acid with concentration ranged from 0.1 M to 1.0 M respectively. AA6061 alloys were anodized at 40 V and 25°C for 60 minutes. FESEM images show that the uniformity of the pores arrangement of porous anodic alumina depends significantly on the concentration of oxalic acid. Well-ordered porous anodic alumina was formed in oxalic acid of 0.3 M, 0.5 M and 0.7 M while disordered porous anodic alumina were formed when the oxalic acid of 0.1 M and 1.0 M were used as electrolytes. EDX analysis revealed that the only peaks corresponding to aluminum and oxygen were detected. Pore size was found to increase with the concentration of oxalic acid while the interpore distance remained almost unchanged although the concentration of oxalic acid increased from 0.1 M to 0.7 M. Atypical anodic alumina without pores arrangement was formed when 1.0 M oxalic acid was used for anodizing.


2016 ◽  
Vol 857 ◽  
pp. 237-241
Author(s):  
Chun Hong Voon ◽  
Bee Ying Lim ◽  
K.L. Foo ◽  
Uda Hashim ◽  
Sung Ting Sam ◽  
...  

In this study, porous anodic alumina was formed on aluminum alloy AA6061 by anodizing using mixture of 0.3 M oxalic acid and phosphoric acid with concentration ranged from 0.1 M to 1.0 M. AA6061 alloys were anodized at 40 V and 25°C for 60 minutes. FESEM images show that the uniformity of the pores arrangement of porous anodic alumina decreased with the increasing concentration of phosphoric acid in the electrolyte. Well-ordered porous anodic alumina was formed in mixture of 0.3 M oxalic acid and 0.1 M phosphoric acid while disordered porous anodic alumina were formed when the concentration of phosphoric acid were in the range of 0.3 M to 1.0 M. Pore size and interpore distance were found to increase with the concentration of phosphoric acid in the mixture. X-ray diffraction patterns show that to γ-Al2O3 were formed on the surface of AA6061 after the anodizing process, regardless of the concentration of phosphoric acid in the mixture electrolyte.


2011 ◽  
Vol 179-180 ◽  
pp. 274-278
Author(s):  
Pei Tao Guo ◽  
Zhi Lin Xia ◽  
Yi Yu Xue ◽  
Li Xin Zhao ◽  
Rui Wu

Aluminum films were deposited on glass substrate by electron beam heat evaporation, and porous alumina films with high transmittance were prepared by means of anodic oxidation under different anodizing conditions in oxalic acid solution or phosphoric acid solution respectively. Thus the morphology of these porous alumina films was characterized by different structural. he optical transmittance spectrum at normal incidence over the 300~1000nm spectra region were obtained by spectrophotometer, which shows, in visible and ultraviolet light region, the transmittance of porous alumina films prepared in oxalic acid solution is much better than that prepared in phosphoric acid solution. The SEM analysis results showed that the pores are circular and uniform in porous alumina prepared in oxalic acid but irregular and non-uniform in that prepared in phosphoric acid, which affected the surface roughness of alumina films.


Sign in / Sign up

Export Citation Format

Share Document