Enhancement of thermal conductivity in presence of macroscopic polarization fields: Role of dispersive transverse phonon modes in nanoscale GaN

2021 ◽  
pp. 129833
Author(s):  
B. Bommalingaiah ◽  
Narayan Gaonkar ◽  
R.G. Vaidya
2017 ◽  
Vol 95 (4) ◽  
Author(s):  
Simen N. H. Eliassen ◽  
Ankita Katre ◽  
Georg K. H. Madsen ◽  
Clas Persson ◽  
Ole Martin Løvvik ◽  
...  

Author(s):  
Arpit Mittal ◽  
Sandip Mazumder

The Monte Carlo (MC) method has found prolific use in the solution of the Boltzmann Transport Equation (BTE) for phonons for the prediction of non-equilibrium heat conduction in crystalline thin films. This paper contributes to the state-of-the-art by performing a systematic study of the role of the various phonon modes on thermal conductivity predictions—in particular, optical phonons. A procedure to calculate scattering time-scales with the inclusion of optical phonons is described and implemented. The roles of various phonon modes are assessed. It is found that Transverse acoustic (TA) phonons are the primary carriers of energy at low temperatures. At high temperatures (T > 200K), longitudinal acoustic (LA) phonons carry more energy than TA phonons. When optical phonons are included, there is a significant change in the amount of energy carried by various phonons modes. At room temperature, optical modes are found to carry about 25% of the energy at steady state in Silicon thin films. Most importantly, inclusion of optical phonons results in better match with experimental observations for Silicon thin-film thermal conductivity.


1997 ◽  
Vol 11 (23) ◽  
pp. 1031-1035 ◽  
Author(s):  
S. P. Tewari ◽  
Poonam Silotia ◽  
Kakoli Bera

Recently observed thermal conductivity of polycrystalline C 60 fullerite compacts has been explained on the basis of a suggested dynamical model of the fullerites which takes into account the collective acoustic phonon modes with frequency dependent relaxation time and localized libronic and orientational diffusive modes with constant relaxation times, in the temperature range 0.7–300 K. Though the bulk of the conduction is via collective modes, the localized modes, too, contribute significantly to the total thermal conductivity.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


2019 ◽  
Vol 52 (48) ◽  
pp. 485302 ◽  
Author(s):  
Dong-Xing Song ◽  
Yu-Feng Zhang ◽  
Wei-Gang Ma ◽  
Xing Zhang

2012 ◽  
Vol 111 (1) ◽  
pp. 221-225 ◽  
Author(s):  
Ke Chu ◽  
Wen-sheng Li ◽  
Hongfeng Dong
Keyword(s):  

Author(s):  
Osama M. Mukdadi ◽  
Subhendu K. Datta ◽  
Martin L. Dunn

Acoustic phonons play a critical role in energy transport in nanostructures. The dispersion of acoustic phonons strongly influences thermal conductivity. Recent observations show lower values of thermal conductivity in finite dimensional nanostructures than in the bulk material. In this work, we will present results for guided acoustic phonon modes in (a) a bilayered GaAs-Nb nanowire of rectangular cross section and (b) a trapezoidal Si nanowire. The former has been used for phonon counting in a nanocalorimeter for measuring thermal conductivity and the latter is commonly used in MEMS applications. A semi-analytical finite element (SAFE) analysis technique has been used to investigate the effects of layering, anisotropy, and boundaries on the dispersion of modes of propagation. Many interesting features of group velocities are found that show confinements around the corners, in the low velocity layer, and coupling of the longitudinal and flexural modes. These would strongly influence thermal conductivity and might provide means of nondestrutive evaluation of mechanical properties.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Manavendra P. Singh ◽  
Manab Mandal ◽  
K. Sethupathi ◽  
M. S. Ramachandra Rao ◽  
Pramoda K. Nayak

AbstractDiscovery of two-dimensional (2D) topological insulators (TIs) demonstrates tremendous potential in the field of thermoelectric since the last decade. Here, we have synthesized 2D TI, Sb2Te3 of various thicknesses in the range 65–400 nm using mechanical exfoliation and studied temperature coefficient in the range 100–300 K using micro-Raman spectroscopy. The temperature dependence of the peak position and line width of phonon modes have been analyzed to determine the temperature coefficient, which is found to be in the order of 10–2 cm−1/K, and it decreases with a decrease in Sb2Te3 thickness. Such low-temperature coefficient would favor to achieve a high figure of merit (ZT) and pave the way to use this material as an excellent candidate for thermoelectric materials. We have estimated the thermal conductivity of Sb2Te3 flake with the thickness of 115 nm supported on 300-nm SiO2/Si substrate which is found to be ~ 10 W/m–K. The slightly higher thermal conductivity value suggests that the supporting substrate significantly affects the heat dissipation of the Sb2Te3 flake.


Sign in / Sign up

Export Citation Format

Share Document