Lattice Thermal Conductivity Modelling of a Diatomic Nanoscale Material

2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.

2016 ◽  
Vol 30 (26) ◽  
pp. 1650360 ◽  
Author(s):  
Vinod Ashokan ◽  
B. D. Indu ◽  
A. Kr. Dimri

In this work, thermal conductivity of high temperature superconductors (HTS) has been analyzed on the basis of modified Callaway model. In the new formulation, the relaxation times of various contributing processes have been observed in newer perspectives of electron and phonon line widths. To obtain line widths, the quantum dynamics of electron and phonon is carried out by using double time thermodynamic Green’s functions method via a general Hamiltonian. The outcome of this heuristic approach is utilized to successfully explain the spectacular behavior of thermal conductivity of HTS, and particularly in the vicinity of transition temperature.


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yaqiong Zhong ◽  
Yong Luo ◽  
Xie Li ◽  
Jiaolin Cui

AbstractAgInTe2 compound has not received enough recognition in thermoelectrics, possibly due to the fact that the presence of Te vacancy (VTe) and antisite defect of In at Ag site (InAg) degrades its electrical conductivity. In this work, we prepared the Ag1-xInTe2 compounds with substoichiometric amounts of Ag and observed an ultralow lattice thermal conductivity (κL = 0.1 Wm−1K−1) for the sample at x = 0.15 and 814 K. This leads to more than 2-fold enhancement in the ZT value (ZT = 0.62) compared to the pristine AgInTe2. In addition, we have traced the origin of the untralow κL using the Callaway model. The results attained in this work suggest that the engineering of the silver vacancy (VAg) concentration is still an effective way to manipulate the thermoelectric performance of AgInTe2, realized by the increased point defects and modified crystal structure distortion as the VAg concentration increases.


2009 ◽  
Vol 1172 ◽  
Author(s):  
Gyaneshwar P. Srivastava

AbstractWe provide a brief discussion of the Boltzmann equation derived Callaway-Debye relaxation time theory of lattice thermal conductivity of micro- and nano-structured materials (of size greater than 20 nm. Incorporated in the theory is a comprehensive treatment of three-phonon scattering events. Using numerical results from this theory, we present a quantitative investigation of the magnitude and temperature variation of the conductivity of CVD polycrystalline diamond films, suspended GaAs nanostructures, Si nanowires, and AlN micro- and nano-ceramics.


Author(s):  
Yunfei Chen ◽  
Guodong Wang ◽  
Deyu Li ◽  
Jennifer R. Lukes

Equilibrium molecular dynamics simulation is used to calculate lattice thermal conductivities of crystal silicon in the temperature range from 400K to 1600K. Simulation results confirmed that thermal expansion, which resulted in the increase of the lattice parameter, caused the decrease of the lattice thermal conductivity. The simulated results proved that thermal expansion imposed another type resistance on phonon transport in crystal materials. Isotopic and vacancy effects on lattice thermal conductivity are also investigated and compared with the prediction from the modified Debye Callaway model. It is demonstrated in the MD simulation results that the isotopic effect on lattice thermal conductivity is little in the temperature range from 400K to 1600K for isotopic concentration below 1%, which implies the isotopic scattering on phonon due to mass difference can be neglected over the room temperature. The remove of atoms from the crystal matrix caused mass difference and elastic strain between the void and the neighbor atoms, which resulted in vacancy scattering on phonons. Simulation results demonstrated this mechanism is stronger than that caused by isotopic scattering on phonons due to mass difference. A good agreement is obtained between the MD simulation results of silicon crystal with vacancy defects and the data predicted from the modified Debye Callaway model. This conclusion is helpful to demonstrate the validity of Klemens' Rayleigh model for impurity scattering on phonons.


Sign in / Sign up

Export Citation Format

Share Document