Effect of graphite content on microstructure and properties of Al2O3 ceramic and 304 stainless steel brazed joints

2021 ◽  
pp. 131050
Author(s):  
Haitao Xue ◽  
Tao Li ◽  
Weibing Guo ◽  
Cuixin Chen ◽  
Jianglong Zhao ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
pp. 152-160
Author(s):  
Yanjie Wang ◽  
Xuru Hou ◽  
Lin Zhao ◽  
Yun Peng ◽  
Chengyong Ma ◽  
...  

304 stainless steel test block was fabricated by continuous melting wire with CMT and pulse mixed mode, and the path of additive manufacturing is layered slice S-shaped. The relationship between microstructure and properties of the specimen was investigated by microscope, SEM, EBSD, XRD, tensile, impact and electrochemical experiments. The results show that molding between weld and weld is very good, and the microstructure is mainly Austenite, Ferrite and a little of σ, and there are three kinds of Ferrite morphology: cellular, wormlike and lath. σ phase precipitates easily in regions with high ferrite content and is distributed at the boundary between austenite and ferrite. The specimen has good low temperature toughness. The microscopic fracture surface is mainly dimple, and the precipitates in the fracture surface are mainly fine carbide particles. The tensile strength of the additive manufacturing 304 specimen is higher than the forged specimen, and the type of fracture is ductile fracture. The electrochemical analysis of 304 stainless steel specimens and forgings shows that CMT and pulse arc additive manufacturing specimen has excellent corrosion resistance and its corrosion current is slightly lower than the forging.


2010 ◽  
Vol 1276 ◽  
Author(s):  
F. García-Vázquez ◽  
I. Guzmán-Flores ◽  
A. Garza ◽  
J. Acevedo

AbstractBrazing is a unique method to permanently join a wide range of materials without oxidation. It has wide commercial application in fabricating components. This paper discusses results regarding the brazing process of 304 stainless steel. The experimental brazing is carried out using a nickel-based (Ni-11Cr-3.5Si-2.25B-3.5Fe) filler alloy. In this process, boron and silicon are incorporated to reduce the melting point, however they form hard and brittle intermetallic compounds with nickel (eutectic phases) which are detrimental to the mechanical properties of brazed joints. This investigation deals with the effects of holding time and brazing temperature on the microstructure of joint and base metal, intermetallic phases formation within the brazed joint as well as measurement of the tensile strength. The results show that a maximum tensile strength of 464 MPa is obtained at 1120°C and 4 h holding time. The shortest holding times will make boron diffuse insufficiently and generate a great deal of brittle boride components.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 198 ◽  
Author(s):  
Peng Xue ◽  
Yang Zou ◽  
Peng He ◽  
Yinyin Pei ◽  
Huawei Sun ◽  
...  

The microstructure and properties of a Cu/304 stainless steel dissimilar metal joint brazed with a low silver Ag16.5CuZnSn-xGa-yCe braze filler after aging treatment were investigated. The results indicated that the addition of Ce could reduce the intergranular penetration depth of the filler metal into the stainless steel during the aging process. The minimum penetration depth in the Ag16.5CuZnSn-0.15Ce brazed joint was decreased by 48.8% compared with the Ag16.5CuZnSn brazed joint. Moreover, the shear strength of the brazed joint decreased with aging time while the shear strength of the AgCuZnSn-xGa-yCe joint was still obviously higher than the Ag16.5CuZnSn joint after a 600 h aging treatment. The fracture type of the Ag16.5CuZnSn-xGa-yCe brazed joints before aging begins ductile and turns slightly brittle during the aging process. Compared to all the results, the Ag16.5CuZnSn-2Ga-0.15Ce brazed joints show the best performance and could satisfy the requirements for cost reduction and long-term use.


Sign in / Sign up

Export Citation Format

Share Document