A Hybrid Neural Network - Genetic Algorithm for Prediction of Mechanical Properties of ASS-304 at Elevated Temperatures

2017 ◽  
Vol 4 (2) ◽  
pp. 746-751 ◽  
Author(s):  
Lakshmi Kanumuri ◽  
D.V. Pushpalatha ◽  
Akshay S.K. Naidu ◽  
Swadesh Kumar Singh
2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5316
Author(s):  
Zhenlong Zhu ◽  
Yilong Liang ◽  
Jianghe Zou

Accurately improving the mechanical properties of low-alloy steel by changing the alloying elements and heat treatment processes is of interest. There is a mutual relationship between the mechanical properties and process components, and the mechanism for this relationship is complicated. The forward selection-deep neural network and genetic algorithm (FS-DNN&GA) composition design model constructed in this paper is a combination of a neural network and genetic algorithm, where the model trained by the neural network is transferred to the genetic algorithm. The FS-DNN&GA model is trained with the American Society of Metals (ASM) Alloy Center Database to design the composition and heat treatment process of alloy steel. First, with the forward selection (FS) method, influencing factors—C, Si, Mn, Cr, quenching temperature, and tempering temperature—are screened and recombined to be the input of different mechanical performance prediction models. Second, the forward selection-deep neural network (FS-DNN) mechanical prediction model is constructed to analyze the FS-DNN model through experimental data to best predict the mechanical performance. Finally, the FS-DNN trained model is brought into the genetic algorithm to construct the FS-DNN&GA model, and the FS-DNN&GA model outputs the corresponding chemical composition and process when the mechanical performance increases or decreases. The experimental results show that the FS-DNN model has high accuracy in predicting the mechanical properties of 50 furnaces of low-alloy steel. The tensile strength mean absolute error (MAE) is 11.7 MPa, and the yield strength MAE is 13.46 MPa. According to the chemical composition and heat treatment process designed by the FS-DNN&GA model, five furnaces of Alloy1–Alloy5 low-alloy steel were smelted, and tensile tests were performed on these five low-alloy steels. The results show that the mechanical properties of the designed alloy steel are completely within the design range, providing useful guidance for the future development of new alloy steel.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Lukas Falat ◽  
Dusan Marcek ◽  
Maria Durisova

This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined withK-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.


Sign in / Sign up

Export Citation Format

Share Document