Effect of silver oxide on hydroxy carbonated apatite formation for simulated body fluid soaked calcium phospho silicate system

2019 ◽  
Vol 19 ◽  
pp. 2613-2616 ◽  
Author(s):  
B. Naveen Kumar Reddy ◽  
P. Kiran
2021 ◽  
Vol 2080 (1) ◽  
pp. 012018
Author(s):  
Syed Nuzul Fadzli Syed Adam ◽  
Firuz Zainuddin ◽  
Azlin Fazlina Osman

Abstract In this work, biocompatible glass (bioglass) particles were prepared by low temperature, acid catalysed sol-gel method. The effect of varying phosphate (P2O5) content (10, 15 and 20 mol %) in the sol-gel derived glass composition were studied. The sol-gel derived bioglass particles were compacted into cylindrical pellets via hydraulic press machine and sintered at 600°C for 3 hours. The bioglass particulates were analysed by x-ray fluorescence (XRF), Fourier Transformed Infrared (FTIR), X-Ray Diffraction (XRD) and nitrogen gas adsorption. Meanwhile, the sintered bioglass pellets were analysed by FTIR, XRD and FESEM-EDX. Furthermore, in vitro bioactivity analysis was performed by immersion in simulated body fluid (SBF) for 14 days. Bioglass particulates with high glassy phase, high surface area and high porosities were obtained for all compositions. Increasing of phosphate content to 20 mol% particularly reduced the porous characteristics of the bioglass particulates. Furthermore, leads to higher bridging oxygen (BO) atoms, higher amorphous silicate networks, lower glass crystallinity and higher number of phosphate crystallites within the amorphous glassy matrix. Increased to 20 mol% of phosphate also reduced the ability of the bioglass surface to induce carbonated apatite formation when immersed in simulated body fluid (SBF) solution.


2009 ◽  
Vol 4 (4) ◽  
pp. 045005 ◽  
Author(s):  
Qing Lin ◽  
Yanbao Li ◽  
Xianghui Lan ◽  
Chunhua Lu ◽  
Yixin Chen ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Farzad Soleymani ◽  
Rahmatollah Emadi ◽  
Sorour Sadeghzade ◽  
Fariborz Tavangarian

Polymer–ceramic composite coatings on magnesium-based alloys have attracted lots of attention in recent years, to control the speed of degradability and to enhance bioactivity and biocompatibility. In this study, to decrease the corrosion rate in a simulated body fluid (SBF) solution for long periods, to control degradability, and to enhance bioactivity, polycaprolactone–chitosan composite coatings with different percentages of baghdadite (0 wt.%, 3 wt.%, and 5 wt.%) were applied to an anodized AZ91 alloy. According to the results of the immersion test of the composite coating containing 3 wt.% baghdadite in a phosphate buffer solution (PBS), the corrosion rate decreased from 0.45 (for the AZ91 sample) to 0.11 mg/cm2·h after seven days of immersion. To evaluate the apatite formation capability of specimens, samples were immersed in an SBF solution. The results showed that the samples were bioactive as apatite layers formed on the surface of specimens. The composite coating containing 3 wt.% baghdadite showed the highest apatite-formation capability, with a controlled release of ions, and the lowest corrosion rate in the SBF.


2014 ◽  
Vol 922 ◽  
pp. 657-662 ◽  
Author(s):  
Sharidah Azuar Abdul Azis ◽  
John Kennedy ◽  
Peng Cao

In this study, hydroxyapatite (HA) coatings on Ti6Al4V substrate were deposited using an ion beam sputtering technique. Owing to its medical applications, the crystalline phases present in the HA must be controlled. This study investigated the effect of post-deposition heat treatment at different temperatures and evaluated the microstructure of the HA coatings and their behaviours in simulated body fluid (SBF). The post-deposition treatment of the as-deposited samples was carried out in an air-circulated furnace at a temperature between 3000C and 6000C. The XRD patterns reveal that the minimum temperature to transform the HA coating from amorphous to crystalline phase is 4000C. A higher temperature at 6000C leads to a growth of the crystalline HA phases. Fourier transform infrared spectroscopy (FTIR) measurements show the existence of hydroxyl and PO-bonds in all coatings and the amounts varied with temperature. Atomic Force Microscopy (AFM) study suggests that the nanostructured crystalline HA starts to grow at 4000C and becomes more obvious at a higher temperature of 6000C. The simulated body fluid (SBF) test reveals that better apatite formation with post deposition heat treatment at 6000C would potentially enhance the formation of new bone (osseointegration).


Author(s):  
H. Takadama ◽  
H.-M. Kim ◽  
F. Miyaji ◽  
T. Kokubo ◽  
T. Nakamura

Author(s):  
Sung-Baek Cho ◽  
Kazuki Nakanishi ◽  
Tadashi Kokubo ◽  
Naohiro Soga ◽  
Chikara Ohtsuki ◽  
...  

1992 ◽  
Vol 143 ◽  
pp. 84-92 ◽  
Author(s):  
Chikara Ohtsuki ◽  
Tadashi Kokubo ◽  
Takao Yamamuro

2006 ◽  
Vol 309-311 ◽  
pp. 477-480
Author(s):  
Chikara Ohtsuki ◽  
Takahiro Kawai ◽  
Masanobu Kamitakahara ◽  
Masao Tanihara ◽  
Toshiki Miyazaki ◽  
...  

Apatite formation on polyamide films containing either carboxyl or sulfonic groups was compared in 1.5SBF, whose ion concentrations are 1.5 times those of a simulated body fluid (SBF). The sulfonic groups induced the apatite nucleation earlier than the carboxyl groups. In contrast, the rate of crystal growth depended not on the kind of functional group, but on the degree of supersaturation of the surrounding solution. The more ready association of sulfonic groups with calcium ions may lead to earlier apatite nucleation than that of carboxyl groups. Adhesive strength of the apatite layer to polyamide film containing sulfonic groups was significantly lower than that with carboxyl groups depending on the chemical interactions as well as on the mechanical properties of the polyamide film.


Sign in / Sign up

Export Citation Format

Share Document