scholarly journals Effect of varying phosphate content on the structure and properties of sol-gel derived SiO2-CaO-P2O5 bio-glass

2021 ◽  
Vol 2080 (1) ◽  
pp. 012018
Author(s):  
Syed Nuzul Fadzli Syed Adam ◽  
Firuz Zainuddin ◽  
Azlin Fazlina Osman

Abstract In this work, biocompatible glass (bioglass) particles were prepared by low temperature, acid catalysed sol-gel method. The effect of varying phosphate (P2O5) content (10, 15 and 20 mol %) in the sol-gel derived glass composition were studied. The sol-gel derived bioglass particles were compacted into cylindrical pellets via hydraulic press machine and sintered at 600°C for 3 hours. The bioglass particulates were analysed by x-ray fluorescence (XRF), Fourier Transformed Infrared (FTIR), X-Ray Diffraction (XRD) and nitrogen gas adsorption. Meanwhile, the sintered bioglass pellets were analysed by FTIR, XRD and FESEM-EDX. Furthermore, in vitro bioactivity analysis was performed by immersion in simulated body fluid (SBF) for 14 days. Bioglass particulates with high glassy phase, high surface area and high porosities were obtained for all compositions. Increasing of phosphate content to 20 mol% particularly reduced the porous characteristics of the bioglass particulates. Furthermore, leads to higher bridging oxygen (BO) atoms, higher amorphous silicate networks, lower glass crystallinity and higher number of phosphate crystallites within the amorphous glassy matrix. Increased to 20 mol% of phosphate also reduced the ability of the bioglass surface to induce carbonated apatite formation when immersed in simulated body fluid (SBF) solution.

2005 ◽  
Vol 480-481 ◽  
pp. 21-26 ◽  
Author(s):  
L.J. Skipper ◽  
F.E. Sowrey ◽  
D.M. Pickup ◽  
R.J. Newport ◽  
K.O. Drake ◽  
...  

The formation of a carbonate-containing hydroxyapatite, HCAp, layer on bioactive calcium silicate sol-gel glass of the formula (CaO)0.3(SiO2)0.7 has been studied in-vitro in Simulated Body Fluid (SBF). Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES), X-ray diffraction (XRD), and solid state nuclear magnetic resonance (NMR) measurements have been performed with results showing the formation of a significantly amorphous HCAp layer after less than 5 hours in solution.


2018 ◽  
Vol 9 ◽  
pp. 204173141877417 ◽  
Author(s):  
Shiva Kamini Divakarla ◽  
Seiji Yamaguchi ◽  
Tadashi Kokubo ◽  
Dong-Wook Han ◽  
Jae Ho Lee ◽  
...  

The leading reason for implant revision surgery globally is lack of implant integration with surrounding bone. A new titanium alloy GUMMETAL® (Ti59Nb36Ta2Zr3O0.3) is currently used in biomedical devices and has a Young’s modulus that is better matched to bone. The surface was subject to NaOH, CaCl2, heat and water treatment (BioGum) after which the surfaces were evaluated using atomic force microscope, scanning electron microscope, X-ray diffractometer and elemental analysis using energy dispersive X-ray. To demonstrate enhanced bone bonding ability and cytocompatibility, apatite formation in simulated body fluid and in vitro stem cell attachment, proliferation and cytoskeleton organisation were examined. The formation of a ~200 nm nanoscale needle-like calcium titanate network on the surface following treatment was revealed and upon soaking in simulated body fluid, the formation of a ~5 µm layer of apatite. Metabolic activity of rat bone marrow stem cells on BioGum was increased in comparison to control and the cell number appeared greater, with more elongated morphology as early as 2 h post-seeding. This positions the modification as a simple and potentially universal technology for the improvement of implant integration.


2005 ◽  
Vol 288-289 ◽  
pp. 171-174
Author(s):  
Hui Wang ◽  
Bang Cheng Yang ◽  
Qi Feng Yu ◽  
Dayi Wu ◽  
Xing Dong Zhang

Titania ceramics is lack of bone-bonding ability even if it has excellent biocompatibility. Recently, it is even found that the nanophase titania ceramics could enhance the proliferation of osteoblasts. If the bone-bonding ability of this material is improved, it would be a potential bone replacement material. Bioactive glass-ceramic (BGC) is provided with the best bioactivity in biomaterials. In this study, the apatite formation ability and the mechanic properties of titania ceramic were investigated by the accession of BGC. Four samples: TiO2 ceramic, TiO2 +10%BGC, TiO2 +20%BGC and BGC were prepared respectively. These ceramics were exposed to a simulated body fluid (SBF) for 7, 14 and 21d. Scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX) and thin film X-ray diffraction (TF-XRD) results showed that the apatite formation of the ceramics was improved by adding BGC into nanophase titania ceramic. The mechanical analysis showed the biomechanical compatibility was also improved by adding BGC into nanophase titania ceramic.


2007 ◽  
Vol 330-332 ◽  
pp. 67-70 ◽  
Author(s):  
Jun Ou ◽  
Guang Fu Yin ◽  
Da Li Zhou ◽  
X. C. Chen ◽  
Ya Dong Yao ◽  
...  

Merwinite powders were synthesized by a sol-gel process. The bioactivity in vitro of merwinite was investigated by soaking the powders in simulated body fluid (SBF), the growth of hydroxyapatite(HAp) on the surface of the powder was evaluated in various time. It was found that hydroxyapatite was formed after soaking for 14 days. The results indicate that merwinite possessed apatite-formation ability might be a potential candidate biomaterial for hard tissue repair.


2011 ◽  
Vol 299-300 ◽  
pp. 508-511
Author(s):  
Guo Chao Qi ◽  
Feng Jun Shan ◽  
Qiang Li ◽  
Jing Yuan Yu ◽  
Qu Kai Zhang

Magnesium apatite (MA, (Ca9Mg)(PO4)6(OH)2) and Hydroxyapatite (HA) coatings were synthesized on Ti6Al4V substrates by a sol-gel dip coating method. Glucose and bovine serum albumin (BSA) were added to the standard simulated body fluid (SBF) separately to form organic-containing simulated body fluids. MA and HA coatings were immersed in standard and organic modified SBF for time periods of 4, 7, 14, 21 and 28 days at 37±1°C. The surface dissolution and deposition behavior of the coatings after soaking were examined with Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results show that glucose in SBF has no apparent effect on the deposition of new apatite from the solution. BSA in SBF shows retardation effect on the deposition of apatite by forming a protein dominant globular layer. This layer inhibits the further deposition of apatite from SBF solution.


2010 ◽  
Vol 636-637 ◽  
pp. 31-35 ◽  
Author(s):  
Gisela M. Luz ◽  
João F. Mano

In this study a new P-free system applied to the production of Bioactive Glass Nanoparticles (BG-NPs) is proposed, in order to evaluate the effect of suppressing this component, in the bioactivity capability of the materials. The BG-NPs, based on both ternary (SiO2-CaO-P2O5) and binary (SiO2-CaO) systems, were prepared via a sol-gel method. The morphology and composition of the BG-NPs were studied using FTIR and SEM. New composite membranes were produced combining chitosan and the BG-NPs. The bioactive character of the prepared biodegradable membranes was accessed in vitro by analyzing the capability for apatite formation onto the surface after being immersed in simulated body fluid (SBF). EDX and SEM were used to confirm the bioactivity of the materials.


2014 ◽  
Vol 604 ◽  
pp. 175-179 ◽  
Author(s):  
Lasma Poca ◽  
Arita Dubnika ◽  
Dagnija Loca ◽  
Liga Berzina-Cimdina

In the present study, thein vitrobioactivity of silver-doped hydroxyapatite (HAp/Ag) scaffolds was investigated. HAp/Ag was prepared using two different modified wet precipitation methods. The X-ray powder diffraction (XRD) results showed, that sintered HAp/Ag samples prepared using method (I) contain two phases HAp and Ag, but samples prepared by method (II) contain three different phases - HAp, Ag and AgO. After 2 month incubation period in simulated body fluid (SBF), surface of HAp/Ag scaffolds was coated with bone-like apatite. Thickness of bone-like apatite layer increased from 2 μm up to 32 μm, increasing the incubation period.


2016 ◽  
Author(s):  
S. A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin ◽  
Hamisah Ismail

2009 ◽  
Vol 79-82 ◽  
pp. 815-818 ◽  
Author(s):  
Qiu Ying Zhao ◽  
Ding Yong He ◽  
Xiao Yan Li ◽  
Jian Min Jiang

Hydroxyapatite (HA) coatings were deposited onto Ti6Al4V substrate by microplasma spraying (MPS) in the current research. The morphology, phase compositions, and percentage of crystallinity of the coatings were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction. An in vitro evaluation by soaking the coatings in simulated body fluid (SBF) for up to 14 days was conducted aiming at the evaluation of their bioactivity. Results from the present investigation suggest that microplasma sprayed HA coatings exhibited certain roughness, pores, and microcracks. Thermal decomposition existed in the coatings where HA, α-TCP,β-TCP, amorphous phases, and CaO-exclusive impurities were observed. The in vitro test indicated that HA coatings deposited by MPS possessed better bioactivity and stability. A layer of carbonate-apatite covered most of the coating surface, which did not exhibit significant spalling after incubation in SBF.


Sign in / Sign up

Export Citation Format

Share Document