Optimization of machining parameters on AA6351 alloy steel using Response Surface Methodology (RSM)

2020 ◽  
Vol 33 ◽  
pp. 2686-2689
Author(s):  
G. Karthik Pandiyan ◽  
T. Prabaharan
2018 ◽  
Vol 49 (2) ◽  
pp. 62-81 ◽  
Author(s):  
Shailendra Kumar ◽  
Bhagat Singh

Tool chatter is an unavoidable phenomenon encountered in machining processes. Acquired raw chatter signals are contaminated with various types of ambient noises. Signal processing is an efficient technique to explore chatter as it eliminates unwanted background noise present in the raw signal. In this study, experimentally recorded raw chatter signals have been denoised using wavelet transform in order to eliminate the unwanted noise inclusions. Moreover, effect of machining parameters such as depth of cut ( d), feed rate ( f) and spindle speed ( N) on chatter severity and metal removal rate has been ascertained experimentally. Furthermore, in order to quantify the chatter severity, a new parameter called chatter index has been evaluated considering aforesaid denoised signals. A set of 15 experimental runs have been performed using Box–Behnken design of experiment. These experimental observations have been used to develop mathematical models for chatter index and metal removal rate considering response surface methodology. In order to check the statistical significance of control parameters, analysis of variance has been performed. Furthermore, more experiments are conducted and these results are compared with the theoretical ones in order to validate the developed response surface methodology model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Venkateshwar Reddy Pathapalli ◽  
Meenakshi Reddy Reddigari ◽  
Eswara Kumar Anna ◽  
P. Srinivasa Rao ◽  
D V. Ramana Reddy

PurposeMetal matrix composites (MMC) has been a section which gives an overview of composite materials and owing to those exceptional physical and mechanical properties, particulate-reinforced aluminum MMCs have gained increasing interest in particular engineering applications. Owing to the toughness and abrasive quality of reinforcement components such as silicon carbide (SiC) and titanium carbide (TiC), such materials are categorized as difficult materials for machining. The work aims to develop the model for evaluating the machinability of the materials via the response surface technique by machining three distinct types of hybrid MMCs.Design/methodology/approachThe combined effects of three machining parameters, namely “cutting speed” (s), “feed rate” (f) and “depth of cut” (d), together with three separate composite materials, were evaluated with the help of three performance characteristics, i.e. material removal rate (MRR), cutting force (CF) and surface roughness (SR). Response surface methodology and analysis of variance (ANOVA) both were initially used for analyzing the machining parameters results.FindingsThe contours were developed to observe the combined process parameters along with their correlations. The process variables were concurrently configured using grey relational analysis (GRA) and the composite desirability methodology. Both the GRA and composite desirability approach obtained similar results.Practical implicationsThe results obtained in the present paper will be helpful for decision-makers in manufacturing industries, who work on metal cutting area especially composites, to select the suitable solution by implementing the Grey Taguchi and modeling techniques.Originality/valueThe originality of this research is to identify the suitability of process parameters combination based on the obtained research results. The optimization of machining parameters in turning of hybrid metal matrix composites is carried out with two different methods such as Grey Taguchi and composite desirability approach.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 162 ◽  
Author(s):  
Ramanan. G ◽  
Rajesh Prabha.N ◽  
Diju Samuel.G ◽  
Jai Aultrin. K. S ◽  
M Ramachandran

This manuscript presents the influencing parameters of CNC turning conditions to get high removal rate and minimal response of surface roughness in turning of AA7075-TiC-MoS2 composite by response surface method. These composites are particularly suited for applications that require higher strength, dimensional stability and enhanced structural rigidity. Composite materials are engineered materials made from at least two or more constituent materials having different physical or chemical properties. In this work seventeen turning experiments were conducted using response surface methodology. The machining parameters cutting speed, feed rate, and depth of cut are varied with respect to different machining conditions for each run. The optimal parameters were predicted by RSM technique. Turning process is studied by response surface methodology design of experiment. The optimal parameters were predicted by RSM technique. The most influencing process parameter predicted from RSM techniques in cutting speed and depth of cut.   


Sign in / Sign up

Export Citation Format

Share Document