Electrical Discharge Drilling of micro-hole on Inconel 718 using Rotary Tubular Electrode

2020 ◽  
Vol 22 ◽  
pp. 1723-1730
Author(s):  
Abimannan Giridharan ◽  
Jibin Oommen ◽  
V.S. Srisailesh ◽  
R. Mohan
Author(s):  
Deepak Rajendra Unune ◽  
Amit Aherwar

Inconel 718 superalloy finds wide range of applications in various industries due to its superior mechanical properties including high strength, high hardness, resistance to corrosion, etc. Though poor machinability especially in micro-domain by conventional machining processes makes it one of the “difficult-to-cut” material. The micro-electrical discharge machining (µ-EDM) is appropriate process for machining any conductive material, although selection of machining parameters for higher machining rate and accuracy is difficult task. The present study attempts to optimize parameters in micro-electrical discharge drilling (µ-EDD) of Inconel 718. The material removal rate, electrode wear ratio, overcut, and taper angle have been selected as performance measures while gap voltage, capacitance, electrode rotational speed, and feed rate have been selected as process parameters. The optimum setting of process parameters has been obtained using Genetic Algorithm based multi-objective optimization and verified experimentally.


2019 ◽  
Vol 969 ◽  
pp. 644-649
Author(s):  
Rakesh Kumar ◽  
Anand Pandey ◽  
Pooja Sharma

Inconel-718 is a nickel based super alloy (difficult-to-cut material) used in aerospace industry. Analysis of machining performances viz. Over Cut (OC) & Surface Roughness (SR) for Inconel-718 through rotary Cu-pin tool electrode have been carried out. Peak current (Ip), pulse-on time (Ton), tool rotation (Nt) & hole depth (h) were used as input factors in Electrical Discharge Drilling (EDD) of Inconel-718 work-piece. Effect of input parameters on performance characteristics like OC & SR were found by Taguchi’s L9 (34) orthogonal array. It is reveals that Ip & h are most affecting factors that affects OC & SR. The Scanning Electron Microscope image was used to measure diameter of hole on work-piece after machining.


Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 483-491
Author(s):  
Jayaraj JEEVAMALAR ◽  
Sundaresan RAMABALAN ◽  
Jayaraj JANCIRANI

In order to achieve higher productivity and product quality, the investigation of machining parameters on Electrical Discharge Drilling and surface characteristic analysis are most critical for manufacturing industries. The intention of this article is to assess the impact on performance matrices including Material Removal Rate, and Surface Roughness of input factors of peak current, pulse-on and off duration while drilling with a rotary hollow copper tool on Inconel 718 under Tungsten powder suspended kerosene. Analysis of Variance has been implemented using MINITAB release 18 software to identify the most significant input factors. An Artificial Neural Network was used for validating the experimental results of the drilling process. The additional intention of this research is to discover the significance of influencing input parameters and analyze the quality surface of the workpiece were observed by microscope tests. The experimental results indicated that the peak current and pulse-on period have an effect on the performance of the drilling process considerably.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1476 ◽  
Author(s):  
Magdalena Machno ◽  
Rafał Bogucki ◽  
Maciej Szkoda ◽  
Wojciech Bizoń

Nickel-based superalloys are being increasingly applied to manufacture components in the aviation industry. The materials are classified as difficult-to-machine using conventional methods. Nowadays, manufacturing techniques are needed to drill high aspect ratio holes of above 20:1 (depth-to-diameter ratio) in these materials. One of the most effective methods of making high-aspect-ratio holes is electrical discharge drilling (EDD). While drilling high aspect ratio holes, a crucial issue is the flushing of the gap area and the evacuation of the erosion products. The use of deionized water as the dielectric fluid in the EDD offers a considerable potential. This paper includes an analysis of the influence of the machining parameters (pulse time, current amplitude and discharge voltage) on the process performance (drilling speed, linear tool wear, taper angle, hole’s aspect ratio, side gap thickness), during the EDD with the use of deionized water in the Inconel 718 alloy. The obtained through holes were subjected to the extended analysis. The impact of the initial working fluid temperature and pressure on the conditions of the flow through the electrode channel was also subjected to the analysis. The deionized water properties were changed by applying an initial temperature. Based on the results of an analysis of the previous research, the EDD of the through holes was performed for a pre-set initial temperature (~313.15 °K) and initial pressure of the working fluid (8 MPa) and selected process parameters. An analysis of the results indicates increasing of hole’s aspect ratio by about 15% (above 30), decreasing the side gap thickness by about 40% and enhanced surface integrity.


Author(s):  
Deepak Rajendra Unune ◽  
Amit Aherwar

Inconel 718 superalloy finds wide range of applications in various industries due to its superior mechanical properties including high strength, high hardness, resistance to corrosion, etc. Though poor machinability especially in micro-domain by conventional machining processes makes it one of the “difficult-to-cut” material. The micro-electrical discharge machining (µ-EDM) is appropriate process for machining any conductive material, although selection of machining parameters for higher machining rate and accuracy is difficult task. The present study attempts to optimize parameters in micro-electrical discharge drilling (µ-EDD) of Inconel 718. The material removal rate, electrode wear ratio, overcut, and taper angle have been selected as performance measures while gap voltage, capacitance, electrode rotational speed, and feed rate have been selected as process parameters. The optimum setting of process parameters has been obtained using Genetic Algorithm based multi-objective optimization and verified experimentally.


Electrical Discharge Drilling (EDD) is an unconventional manufacturing process with large industrial performances. Addition of powder particles in dielectric changes some process variables and machines hard and hard to cut materials with greater surface finish high tolerance and accuracy to accomplish a superior material removal rate with a reduced Tool Wear Rate (TWR). This research work explores the performance of TWR on Tungsten Powder Mixed Electrical Discharge Drilling (W-PMEDD) on Inconel 718 super alloy. The input machining parameters of Peak Current (Ip ) Pulse on (Ton) and Pulse off time (Toff) and the output measure of TWR were examined by Response Surface Method (RSM). Analysis of Variance was used to evaluate the effect of the machining parameters and it is concluded that Ip, Ton and Toff are the most significant parameters while machining of W-PMEDD on Inconel 718.


Sign in / Sign up

Export Citation Format

Share Document