scholarly journals On the Influence of Electrical Discharge Drilling Parameters and Per-formance Measures of Inconel 718 Superalloy - a Study

Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 483-491
Author(s):  
Jayaraj JEEVAMALAR ◽  
Sundaresan RAMABALAN ◽  
Jayaraj JANCIRANI

In order to achieve higher productivity and product quality, the investigation of machining parameters on Electrical Discharge Drilling and surface characteristic analysis are most critical for manufacturing industries. The intention of this article is to assess the impact on performance matrices including Material Removal Rate, and Surface Roughness of input factors of peak current, pulse-on and off duration while drilling with a rotary hollow copper tool on Inconel 718 under Tungsten powder suspended kerosene. Analysis of Variance has been implemented using MINITAB release 18 software to identify the most significant input factors. An Artificial Neural Network was used for validating the experimental results of the drilling process. The additional intention of this research is to discover the significance of influencing input parameters and analyze the quality surface of the workpiece were observed by microscope tests. The experimental results indicated that the peak current and pulse-on period have an effect on the performance of the drilling process considerably.

Author(s):  
Nishant Kumar Singh ◽  
Yashvir Singh ◽  
Abhishek Sharma

This research work investigates the use of Gas-Assisted Electrical Discharge Drilling (GAEDD) of high carbon-chromium die steel. The poor material removal rate (MRR) is one of the profound drawbacks of the traditional Electrical Discharge Drilling (EDD) process. Hence, over the years researchers have been feeling the requisite to develop an advanced strategy that can enhance the MRR. This study has examined the utilization of compressed gas in conventional EDM under the constraint state to assess MRR. The impact of procedure parameters likedischarge current, pulse on time, duty cycle, electrode speed, and discharge gas pressure, on MRR, has been explored too. In addition, Variance Analysis (ANOVA) was performed to determine the significant parameters affecting the MRR. During the examination, a mathematical model was established MRR employing Buckingham π-theorem while the GAEDD was being applied. The experiment and anticipated values of the model show a noteworthy impact of the coefficient of thermal expansion in GAEDD of high carbon-chromium steel. In addition, the Response Surface Method (RSM) model has also been evolved. The comparative analysis of the models developed shows considerable agreement in anticipation. Moreover, the semi-empirical model appears to be even more adaptable especially in comparison to the RSM-based model. In fact, the conclusion of this work is that the dimensional analysis model is an effective and reliable strategy to precise EDD response prediction.


Electrical Discharge Drilling (EDD) is an unconventional manufacturing process with large industrial performances. Addition of powder particles in dielectric changes some process variables and machines hard and hard to cut materials with greater surface finish high tolerance and accuracy to accomplish a superior material removal rate with a reduced Tool Wear Rate (TWR). This research work explores the performance of TWR on Tungsten Powder Mixed Electrical Discharge Drilling (W-PMEDD) on Inconel 718 super alloy. The input machining parameters of Peak Current (Ip ) Pulse on (Ton) and Pulse off time (Toff) and the output measure of TWR were examined by Response Surface Method (RSM). Analysis of Variance was used to evaluate the effect of the machining parameters and it is concluded that Ip, Ton and Toff are the most significant parameters while machining of W-PMEDD on Inconel 718.


Author(s):  
Deepak Rajendra Unune ◽  
Amit Aherwar

Inconel 718 superalloy finds wide range of applications in various industries due to its superior mechanical properties including high strength, high hardness, resistance to corrosion, etc. Though poor machinability especially in micro-domain by conventional machining processes makes it one of the “difficult-to-cut” material. The micro-electrical discharge machining (µ-EDM) is appropriate process for machining any conductive material, although selection of machining parameters for higher machining rate and accuracy is difficult task. The present study attempts to optimize parameters in micro-electrical discharge drilling (µ-EDD) of Inconel 718. The material removal rate, electrode wear ratio, overcut, and taper angle have been selected as performance measures while gap voltage, capacitance, electrode rotational speed, and feed rate have been selected as process parameters. The optimum setting of process parameters has been obtained using Genetic Algorithm based multi-objective optimization and verified experimentally.


Author(s):  
Vikas Gohil ◽  
Yogesh M Puri

Electrical discharge turning is a unique form of electrical discharge machining process, which is being especially developed to generate cylindrical forms and helical profiles on the difficult-to-machine materials at both macro and micro levels. A precise submerged rotating spindle as a work holding system was designed and added to a conventional electrical discharge machine to rotate the workpiece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating workpiece; thus, mirror image of the tool is formed on the circumference of the workpiece. The machining performance of electrical discharge turning process is defined and influenced by its machining parameters, which directly affects the quality of the machined component. This study presents an investigation on the effects of the machining parameters, namely, pulse-on time, peak current, gap voltage, spindle speed and flushing pressure, on the material removal rate (MRR) and surface roughness (Ra) in electrical discharge turning of titanium alloy Ti-6Al-4V. This has been done by means of Taguchi’s design of experiment technique. Analysis of variance as well as regression analysis is performed on the experimental data. The signal-to-noise ratio analysis is employed to find the optimal condition. The experimental results indicate that peak current, gap voltage and pulse-on time are the most significant influencing parameters that contribute more than 90% to material removal rate. In the context of Ra, peak current and pulse-on time come up with more than 82% of contribution. Finally, the obtained predicted optimal results were verified experimentally. It was shown that the error values are all less than 6%, confirming the feasibility and effectiveness of the adopted approach.


2009 ◽  
Vol 83-86 ◽  
pp. 756-763 ◽  
Author(s):  
P.S. Satsangi ◽  
K.D. Chattopadhyay

The use of thermo-electric source of energy, as in electrical discharge machining (EDM), has greatly helped in machining all types of electrically conductive materials being used in different industrial applications. The present work investigates the different machining characteristics during electrical discharge machining on EN-8 steel with a rotary copper electrode. The effects of three independent machining parameters viz. peak current, pulse on time and rotational speed of tool electrode are chosen as variables for evaluating the output parameters such as metal removal rate, surface finish of work piece. The research focuses on developing empirical models for prediction of metal removal rate and surface finish during rotary electrical discharge machining process with the help of input parameters. The models are developed using linear regression analysis by applying logarithmic data transformation of non-linear equation. Analysis of results using partial and multiple correlation analysis reveals that electrical parameters have more significant effect than the non-electrical parameters on the machining characteristics during electrical discharge machining by a rotary electrode. Furthermore, when high MRR is criterion, high peak current and low RPM with low pulse duration produces better output; whereas, and when smooth surface finish is criterion, low peak current and low RPM with high pulse duration produces better output. In addition, the predictions based on the above developed models are verified with extra experiments and are found to be in good agreement with the experimental verifications.


Author(s):  
Deepak Rajendra Unune ◽  
Amit Aherwar

Inconel 718 superalloy finds wide range of applications in various industries due to its superior mechanical properties including high strength, high hardness, resistance to corrosion, etc. Though poor machinability especially in micro-domain by conventional machining processes makes it one of the “difficult-to-cut” material. The micro-electrical discharge machining (µ-EDM) is appropriate process for machining any conductive material, although selection of machining parameters for higher machining rate and accuracy is difficult task. The present study attempts to optimize parameters in micro-electrical discharge drilling (µ-EDD) of Inconel 718. The material removal rate, electrode wear ratio, overcut, and taper angle have been selected as performance measures while gap voltage, capacitance, electrode rotational speed, and feed rate have been selected as process parameters. The optimum setting of process parameters has been obtained using Genetic Algorithm based multi-objective optimization and verified experimentally.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2897 ◽  
Author(s):  
Trung-Thanh Nguyen ◽  
Van-Tuan Tran ◽  
Mozammel Mia

The electrical discharge drilling (EDD) process is an effective machining approach to produce various holes in difficult-to-cut materials. However, the energy efficiency of the EDD operation has not thoroughly been considered in published works. The aim of the current work is to optimize varied parameters for enhancing the material removal rate (MRR), saving drilled energy (ED), and decreasing the expansion of the hole (HE) for the EDD process. Three advanced factors, including the gap voltage adjustor (GAP), capacitance parallel connection (CAP), and servo sensitivity selection (SV), are considered. The predictive models of the performances were proposed with the support of the adaptive neuro-based fuzzy inference system (ANFIS). An integrative approach combining the analytic hierarchy process (AHP) and the neighborhood cultivation genetic algorithm (NCGA) was employed to select optimal factors. The findings revealed the optimal values of the CAP, GAP, and SV were 6, 5, and 4, respectively. Moreover, the ED and HE were decreased by 16.78% and 28.68%, while the MRR was enhanced by 89.72%, respectively, as compared to the common setting values. The explored outcome can be employed as a technical solution to enhance the energy efficiency, drilled quality, and productivity of the EDD operation.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


Sign in / Sign up

Export Citation Format

Share Document