Persuade of sodium hydrate and potassium permanganate treated sisal/textile-grade glass fibers hybrid composite

2020 ◽  
Vol 33 ◽  
pp. 2818-2821
Author(s):  
P. Karthick ◽  
A. Abraham Eben Andrews ◽  
Gunji Srinath ◽  
Najana Tejesh ◽  
Katikareddy Arvindnath Reddy ◽  
...  
Author(s):  
Yuan Jing ◽  
Z. John Ma ◽  
Richard M. Bennett ◽  
David B. Clarke

Grade separations have been used along High-Speed Rail (HSR) to decrease traffic congestion and the danger that occurs at grade crossings. However, the concern with grade separations is the potential damage due to lateral impact of bridge superstructures by over-height vehicles. This is a concern with existing bridges, and lateral impact is not included in standard bridge code provisions. A new bridge technology, Hybrid Composite Beam (HCB), was proposed to meet the requirements of another HSR objective, that of a sustainable solution for the construction of new and replacement bridges in rail infrastructure. The hybrid composite beam combines advanced composite materials with conventional concrete and steel to create a bridge that is stronger and more resistance to corrosion than conventional materials. The HCB is composed of three main parts; the first is a FRP (fiber reinforced polymer) shell, which encapsulates the other two parts. The second part is the compression reinforcement which consists of concrete or cement grout that is pumped into a continuous conduit fabricated into the FRP shell. The third part of the HCB is the tension reinforcement that could consist of carbon or glass fibers, prestressed strands, or other materials that are strong in tension, which is used to equilibrate the internal forces in the compression reinforcement. The combination of conventional materials with FRP exploits the inherent benefits of each material and optimizes the overall performance of the structure. The behavior of this novel system has been studied during the last few years and some vertical static tests have been performed, but no dynamic or lateral impact tests have been conducted yet. Therefore, the main objective of this study is to evaluate the performance of HCB when subjected to lateral impact loading caused by over-height vehicles. This paper explains the advantages of HCB when used in bridge infrastructures. The commercial software ABAQUS was used to perform the finite element (FE) modeling of a 30ft long HCB. Test data was used to validate the results generated by FE analysis. A constant impact loading with a time duration of 0.1 second was applied to an area at the mid-span of the HCB. Lateral deflection and stress distribution were obtained from FE analysis, and local stress concentration can be observed from the stress contour. Full-scale beam dynamic testing will be conducted in the future research to better study the behavior of HCB when subjected to over-height vehicles.


Author(s):  
James W. Giancaspro ◽  
Christos G. Papakonstantinou ◽  
P. N. Balaguru

By far, carbon and glass fibers are the most popular fiber reinforcements for composites. Traditional carbon composites are relatively expensive since the manufacturing process requires significant heat and pressure, while the carbon fibers themselves are inherently expensive to produce. In addition, they are often flammable and their use is restricted when fire is a critical design parameter. Glass fabrics are approximately one order of magnitude less expensive than similar carbon fabrics. However, they lack the stiffness and the durability needed for many high performance applications. By combining these two types of fibers, hybrid composites can be fabricated that are strong, yet relatively inexpensive to produce. The primary objective of this study was to experimentally investigate the effects of bonding high strength carbon fibers to E-glass composite cores using a high temperature, inorganic matrix known as geopolymer. Carbon fibers were bonded to E-glass cores (i) on only the tension face, (ii) on both the tension and compression faces, or (iii) dispersed throughout the core in alternating layers to obtain a strong, yet economical, hybrid composite laminate. For each response measured (flexural capacity, stiffness, and ductility), at least one hybrid configuration displayed mechanical properties comparable to all carbon composite laminates. The results indicate that hybrid composite plates manufactured using 3k unidirectional carbon tape exhibit increases in flexural capacity of approximately 700% over those manufactured using E-glass fibers alone. In general, as the relative amount of carbon fibers increased, the likelihood of precipitating a compression failure also increased. For 92% of the specimens tested, the threshold for obtaining a compression failure was utilizing 30% carbon fibers. The results presented herein can dictate future studies to optimize hybrid performance and to achieve economical configurations for a given set of design requirements.


2014 ◽  
Vol 11 (2) ◽  
pp. 540-546
Author(s):  
Baghdad Science Journal

In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fatigue strength) of composite . The results show us the reinforcement has important act to increased resistance to the fatigue compared with specimens have non reinforcement this side the specimens reinforcement of glass fiber have resistance to fatigue and fatigue life better than the specimens reinforcement of Kevlar fiber . According to hybrid composite sample fatigue test results showed that the sample which reinforced (Kevlar - regular glass – Kevlar) has a best results which showed stress carrying the most powerful and longer fatigue life with more than (1.3 ×10 6) cycle from other hybrids , while the sample with the sample with three Kevlar reinforced layers have less resistant to fatigue


2017 ◽  
Vol 37 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Ahmet Erkliğ ◽  
Mehmet Bulut

Abstract The aim of this study is to evaluate the effect of hybridizing Kevlar and glass fibers on the tensile and Charpy impact properties of their composites. Produced hybrid samples were designed as unbalanced and asymmetric structures in terms of different mixing ratios between woven Kevlar and S-glass fibers, and their tensile properties were determined using ASTM standards. A series of Charpy impact tests were performed to evaluate the amount of impact strength and absorbed energy by impacting each side of the hybrid composite samples. When the hybrid samples were impacted on the surface of the Kevlar side, they exhibited higher impact resistance compared with glass side impact. The resulting degree of hybridization effects showed that addition of Kevlar layers instead of glass layers contributed a significant increase in impact strength and absorbed energy of the overall composite laminate.


2020 ◽  
Vol 33 ◽  
pp. 2811-2813
Author(s):  
A. Raveendra ◽  
D. Muruganandam ◽  
J. Jayapriya ◽  
Raghuram Pradhan ◽  
V. Sasikala ◽  
...  

2019 ◽  
Vol 183 ◽  
pp. 108112 ◽  
Author(s):  
Wei Fan ◽  
Wensheng Dang ◽  
Tao Liu ◽  
Juanzi Li ◽  
Lili Xue ◽  
...  

Author(s):  
Mostefa Bourchak ◽  
Yousef Dobah ◽  
Abdullah Algarni ◽  
Adnan Khan ◽  
Waleed K. Ahmed

Fiber Reinforced Plastic (FRP) composite materials are widely used in many applications especially in aircraft manufacturing because they offer outstanding strength to weight ratio compared to other materials such as aluminum alloys. The use of hybrid composite materials is potentially an effective cost saving design while maintaining strength and stiffness requirements. In this work, Woven Carbon Fibers (WCFs) along with Unidirectional Glass Fibers (UDGFs) are added to a an aerospace-rated epoxy matrix system to produce a hybrid carbon and glass fibers reinforced plastic composite plates. The manufacturing method used here is a conventional vacuum bagging technique and the stacking sequence achieved consists of a symmetric and balanced laminate (±451WCF, 03UDGF, ±451WCF) to simulate the layup usually adopted for helicopter composite blades constructions. Then, tensile static tests samples are cut according to ASTM standard using a diamond blade and tested using a servohydraulic test machine. Acoustic Emission (AE) piezoelectric sensors (transducers) are attached to the samples surface using a special adhesive. Stress waves that are released at the moments of various failure modes are then recorded by the transducers in the form of AE hits and events (a burst of hits) after they pass through pre-amplifiers. Tests are incrementally paused at load levels that represent significant AE hits activity which usually corresponds to certain failure modes. The unbroken samples are then thoroughly investigated using a high resolution microscopy. The multi load level test-and-inspect method combined with AE and microscopy techniques is considered here to be an innovation in the area of composite failure analysis and damage characterization as it has not been carried out before. Results are found to show good correlation between AE hits concentration zones and the specimens damage location observed by microscopy. Waveform analysis is also carried out to classify the damage type based on the AE signal strength energy, frequency and amplitude. Most of the AE activity is found to initiate from early matrix cracking that develops into delamination. Whereas little fiber failure activity has been observed at the initial stages of the load curve. The results of this work are expected to clear the conflicting reports reported in the literature regarding the correlation of AE hits characteristics (e.g. amplitude level) with damage type in FRP composite materials. In addition, the use of a hybrid design is qualitatively assessed here using AE and microscopy techniques for potential cost savings purposes without jeopardizing the weight and strength requirements as is the case in a typical aircraft composite structural design.


: In general the natural fibers are taken out from the sources of animals and plants. In recent days the natural fibers play an important role in engineering applications like automotive, aerospace and marine industries due to abundant availability, less in cost and zero percentage environment harmless in nature. In this paper the investigation of various mechanical properties of hybrid reinforced composite (Palm fiber Basalt S-glass fiber) is been done on the fabricated samples. The different mechanical property includes tensile, hardness and impact tests etc... The fabrication comprises three layers of Palm and Basalt fibers outer laminated by two layers of S-glass fibers using injection molding method. From the various testing and investigation against the test sample it is been concluded that the fibers in the hybrid set took a major role in determining the important mechanical properties. Thus the fibers present in the hybrid composite increases the strength, stiffness and weight ratio of the composite materials. The various forms and structural analysis of the hybrid composite material are processed by using scanning electron microscope for attaining the better results and application basis


Sign in / Sign up

Export Citation Format

Share Document