Effect of modified method of coating on particle incorporation and wear resistance of nickel – phosphorus – diamond composite coatings

Author(s):  
J.T. Winowlin Jappes ◽  
N.C. Brintha ◽  
M. Adam Khan ◽  
N. Johnny Christo
Wear ◽  
2000 ◽  
Vol 239 (1) ◽  
pp. 111-116 ◽  
Author(s):  
V.V.N Reddy ◽  
B Ramamoorthy ◽  
P.Kesavan Nair

2014 ◽  
Vol 308 ◽  
pp. 372-379 ◽  
Author(s):  
Kung-Hsu Hou ◽  
Han-TaoWang ◽  
Hung-Hua Sheu ◽  
Ming-Der Ger

2020 ◽  
Vol 17 (6) ◽  
pp. 1549-1557
Author(s):  
Xiao-yan Shao ◽  
Li-na Zhu ◽  
Wen Yue ◽  
Jia-jie Kang ◽  
Guo-zheng Ma ◽  
...  

2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 515
Author(s):  
Tongfang Liu ◽  
Song Rui ◽  
Sheng Li

Mg alloys are promising biomedical metal due to their natural degradability, good processability, and favorable mechanical properties. However, the poor corrosion resistance limits their further clinical applications. In this study, the combined strategies of surface chemical treatment and layer-by-layer self-assembly were used to prepare composite coatings on Mg alloys to improve the biocorrosion resistance. Specially, alkalized AZ91 Mg alloy generated chemical linkage with silane via Si–O–Mg covalent bond at the interface. Subsequently, Si–OH group from silane formed a crosslinked silane layer by Si–O–Si network. Further chemical assembly with graphene oxide (GO), lengthened the diffusion pathway of corrosive medium. The chemically assembled composite coatings could firmly bond to Mg alloy substrate, which persistently and effectively acted as compact barriers against corrosion propagation. Improved biocorrosion resistance of AZ91 Mg alloy with self-assembly composite coatings of silane/GO was subsequently confirmed by immersion tests. Besides, the Mg alloy exhibited good wear resistance due to outside layer of GO with a lubricant effect. Cell viability of higher than 75% had also been found for the alloy with self-assembly composite coatings, which showed good cytocompatibility.


Wear ◽  
2004 ◽  
Vol 257 (1-2) ◽  
pp. 142-147 ◽  
Author(s):  
P. Wu ◽  
H.M. Du ◽  
X.L. Chen ◽  
Z.Q. Li ◽  
H.L. Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document