Influence of WC particle behavior on the wear resistance properties of Ni–WC composite coatings

Wear ◽  
2004 ◽  
Vol 257 (1-2) ◽  
pp. 142-147 ◽  
Author(s):  
P. Wu ◽  
H.M. Du ◽  
X.L. Chen ◽  
Z.Q. Li ◽  
H.L. Bai ◽  
...  
2020 ◽  
Vol 17 (6) ◽  
pp. 1549-1557
Author(s):  
Xiao-yan Shao ◽  
Li-na Zhu ◽  
Wen Yue ◽  
Jia-jie Kang ◽  
Guo-zheng Ma ◽  
...  

2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 515
Author(s):  
Tongfang Liu ◽  
Song Rui ◽  
Sheng Li

Mg alloys are promising biomedical metal due to their natural degradability, good processability, and favorable mechanical properties. However, the poor corrosion resistance limits their further clinical applications. In this study, the combined strategies of surface chemical treatment and layer-by-layer self-assembly were used to prepare composite coatings on Mg alloys to improve the biocorrosion resistance. Specially, alkalized AZ91 Mg alloy generated chemical linkage with silane via Si–O–Mg covalent bond at the interface. Subsequently, Si–OH group from silane formed a crosslinked silane layer by Si–O–Si network. Further chemical assembly with graphene oxide (GO), lengthened the diffusion pathway of corrosive medium. The chemically assembled composite coatings could firmly bond to Mg alloy substrate, which persistently and effectively acted as compact barriers against corrosion propagation. Improved biocorrosion resistance of AZ91 Mg alloy with self-assembly composite coatings of silane/GO was subsequently confirmed by immersion tests. Besides, the Mg alloy exhibited good wear resistance due to outside layer of GO with a lubricant effect. Cell viability of higher than 75% had also been found for the alloy with self-assembly composite coatings, which showed good cytocompatibility.


Wear ◽  
2000 ◽  
Vol 239 (1) ◽  
pp. 111-116 ◽  
Author(s):  
V.V.N Reddy ◽  
B Ramamoorthy ◽  
P.Kesavan Nair

2013 ◽  
Vol 20 (4) ◽  
pp. 307-310
Author(s):  
Li Wei

AbstractA hard SiC-B4C reinforced composite coating was fabricated by laser alloying of SiC-B4C+Al-Sn-Mo-Y2O3 mixed powders on a Ti-3Al-2V alloy. Al-Sn-Mo mixed powders were first used in the laser alloying technique to improve the wear resistance of titanium alloys. Proper selection of the laser alloying process parameters allows us to obtain a composite coating with a metallurgical combination with substrate. Under the action of Mo, fine particles with high microhardness were produced in the coating matrix and also hindered the formation of adhesion patches and deep plowing grooves during the sliding wear process, leading to the improvement of wear resistance of a titanium alloy substrate surface.


2007 ◽  
Vol 280-283 ◽  
pp. 1489-1492
Author(s):  
Zhen Ting Wang ◽  
Hua Hui Chen

Micro-nanostructured WC composite coatings were successfully fabricated by induced heating sintering method on the surface of Q235 steel .The microstructure, micro-hardness and the wear resistance of the composite coatings were studied .The results show that the microstructure of induced heat layer is mainly composed of Ni-based solid solutions and WC particles. And there exists excellent metallurgical bonding between coating and substrate. The wear resistance of micro-nanostructured WC Composite Coatings is increased by 1.5 times on an average as compared with that of micron.


2021 ◽  
Author(s):  
Linlin ZHANG ◽  
Dawei ZHANG

Ni-Co-W composite coatings modified by different contents of Co-based alloy powder in the Ni-based alloy with 35 wt.% WC (Ni35WC) were deposited on stainless steel by laser cladding. The influence of compositional and microstructural modification on the wear properties has been comparatively investigated by XRD, SEM, and EDS techniques. It was found that the austenite dendrites in the modified coating adding 50 wt.% Co-based alloy were refined and a lot of Cr23C6 or M23(C, B)6 compounds with fine lamellar feature were formed around austenitic grain boundaries or in the intergranular regions. The contribution of element Co to the modification of Ni35WC coating is that it cannot only promote the formation of more hard compounds to refine austenite grains, but also refine the size of precipitates, and change the phase type of eutectic structure as a result of disappeared Cr boride brittle phases. A noticeable improvement in wear resistance is obtained in the Ni35WC coating with 50 wt.% Co-based alloy, which makes the wear rate decreased by about 53 % and 30% by comparison to that of the substrate and the Ni35WC coating, respectively. It is suggested that the improvement is closely related to the composite coating being strengthened owing to the increase of coating hardness, formation of a fine-grained microstructure caused by Co, and fine hard precipitate phases in the eutectic structure.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012015
Author(s):  
M Sh Migranov ◽  
A M Migranov ◽  
S R Shekhtman

Abstract The paper presents the results of a study of one of the ways to increase the wear resistance of “duplex” coatings applied to cutting tools, which are due to preliminary diffusion saturation of the tool surface with nitrogen (known as ion nitriding) followed by physical deposition of a hard coating (Ti, Cr) N. The proposed coating also contains an additional layer with an impurity of ions, deposited on a preliminary nitrided surface of high speed steel before the deposition of a hard coating. Tests were carried out to evaluate the effect of these modified layers on the tool life of the HSS tool. The greatest wear resistance after "triplex" - treatment was achieved during ion implantation of titanium into a pre-nitrided surface. The coefficient of friction of the modified layer was studied at different contact temperatures. Ionic mixing contributes to the appearance of a thin surface layer with an amorphous-like structure, which prolongs the stage of normal wear, which significantly increases the tool life as a result of the self-organization process.


Sign in / Sign up

Export Citation Format

Share Document