Experimental investigation on partial replacement of steel slag and E-waste as fine and coarse aggregate

Author(s):  
S. Bharani ◽  
G. Rameshkumar ◽  
J. Manikandan ◽  
T. Balayogi ◽  
M. Gokul ◽  
...  

Recycling of materials has become a major interest for engineers. At present, the amount of slag deposited in storage yard adds up to millions of tons/year leading to the occupation of farm land and serious pollution to the environment, as a result of the rapid growth in the steel industry. Steel slag is made at 1500- 1650°C having a honey comp shape with high porosity. Using steel slag as the natural aggregate with a lower waste material cost can be considered as a good alternative for sustainable constructions. The objective of this study is to evaluate the performance of residual mechanical properties of concrete with steel slag as coarse aggregate partial replacement after exposing to high temperatures .This study investigates the behavior of using granulated slag as partial or fully coarse aggregate replacement with different percentages of 0%, 15%, 30%, 50% and 100% in concrete when subjected to elevated temperatures. Six groups of concrete mixes were prepared using various replacement percentages of slag exposed to different temperatures of 400 °C, 600 °C and 800 °C for different durations of 1hr, 1.5hr and 2hr. Evaluation tests were compressive strength, tensile strength, and bond strength. The steel slag concrete mixes showed week workability lower than control mix. A systematic increasing of almost up to 21.7% in compressive strength, and 66.2% in tensile strength with increasing the percentage of steel slag replacement to 50%. And the results showed improvement on concrete residual mechanical properties after subjected to elevated temperatures with the increase of steel slag content. The findings of this study give an overview of the effect of steel slag coarse aggregate replacement on concrete after exposed to high temperatures.


2019 ◽  
Vol 8 (3) ◽  
pp. 3449-3452 ◽  

The current research work represents the various test results from an experimental program for the influence of mineral admixture, stone dust, steel slags and rapid hardening (accelerator) type of chemical admixtures along with the inclusion of steel fibers for various mixture proportions on the mechanical properties of concrete. The different strength properties considered the cubical size for compressive strength, prism for flexural rigidity and monitored the ultrasonic pulse velocity test including water absorption (sorptivity) test for different curing days was evaluated. The outcome results for concrete shows that when the percentage of steel slag is increased then there will be a good workability in fresh concrete than normal aggregates. In overall 100% of stone dust, if the portion of steel slag is more than 40% with replacement of coarse aggregate and binding material as slag will lead to minimum workability, there is no change in the proceding workability area in the further addition of super plasticizer. Also, the study indicates that the crimped steel fiber matrix interaction gives considerable results to enhance the bending stress in flexural rigidity caused by the introducing of steel fibers.


2017 ◽  
Vol 29 (4) ◽  
pp. 388-393 ◽  
Author(s):  
Y.K. Sabapathy ◽  
V.B. Balasubramanian ◽  
N. Shiva Shankari ◽  
A. Yeshwant Kumar ◽  
D. Ravichandar

Sign in / Sign up

Export Citation Format

Share Document