Ischemic heart disease detection using support vector Machine and extreme gradient boosting method

Author(s):  
Ladda Ashish ◽  
Sravan Kumar V ◽  
Sahithi Yeligeti
2017 ◽  
Vol 25 (3) ◽  
pp. 321-330 ◽  
Author(s):  
Shang Gao ◽  
Michael T Young ◽  
John X Qiu ◽  
Hong-Jun Yoon ◽  
James B Christian ◽  
...  

Abstract Objective We explored how a deep learning (DL) approach based on hierarchical attention networks (HANs) can improve model performance for multiple information extraction tasks from unstructured cancer pathology reports compared to conventional methods that do not sufficiently capture syntactic and semantic contexts from free-text documents. Materials and Methods Data for our analyses were obtained from 942 deidentified pathology reports collected by the National Cancer Institute Surveillance, Epidemiology, and End Results program. The HAN was implemented for 2 information extraction tasks: (1) primary site, matched to 12 International Classification of Diseases for Oncology topography codes (7 breast, 5 lung primary sites), and (2) histological grade classification, matched to G1–G4. Model performance metrics were compared to conventional machine learning (ML) approaches including naive Bayes, logistic regression, support vector machine, random forest, and extreme gradient boosting, and other DL models, including a recurrent neural network (RNN), a recurrent neural network with attention (RNN w/A), and a convolutional neural network. Results Our results demonstrate that for both information tasks, HAN performed significantly better compared to the conventional ML and DL techniques. In particular, across the 2 tasks, the mean micro and macroF-scores for the HAN with pretraining were (0.852,0.708), compared to naive Bayes (0.518, 0.213), logistic regression (0.682, 0.453), support vector machine (0.634, 0.434), random forest (0.698, 0.508), extreme gradient boosting (0.696, 0.522), RNN (0.505, 0.301), RNN w/A (0.637, 0.471), and convolutional neural network (0.714, 0.460). Conclusions HAN-based DL models show promise in information abstraction tasks within unstructured clinical pathology reports.


2021 ◽  
Vol 12 (2) ◽  
pp. 28-55
Author(s):  
Fabiano Rodrigues ◽  
Francisco Aparecido Rodrigues ◽  
Thelma Valéria Rocha Rodrigues

Este estudo analisa resultados obtidos com modelos de machine learning para predição do sucesso de startups. Como proxy de sucesso considera-se a perspectiva do investidor, na qual a aquisição da startup ou realização de IPO (Initial Public Offering) são formas de recuperação do investimento. A revisão da literatura aborda startups e veículos de financiamento, estudos anteriores sobre predição do sucesso de startups via modelos de machine learning, e trade-offs entre técnicas de machine learning. Na parte empírica, foi realizada uma pesquisa quantitativa baseada em dados secundários oriundos da plataforma americana Crunchbase, com startups de 171 países. O design de pesquisa estabeleceu como filtro startups fundadas entre junho/2010 e junho/2015, e uma janela de predição entre junho/2015 e junho/2020 para prever o sucesso das startups. A amostra utilizada, após etapa de pré-processamento dos dados, foi de 18.571 startups. Foram utilizados seis modelos de classificação binária para a predição: Regressão Logística, Decision Tree, Random Forest, Extreme Gradiente Boosting, Support Vector Machine e Rede Neural. Ao final, os modelos Random Forest e Extreme Gradient Boosting apresentaram os melhores desempenhos na tarefa de classificação. Este artigo, envolvendo machine learning e startups, contribui para áreas de pesquisa híbridas ao mesclar os campos da Administração e Ciência de Dados. Além disso, contribui para investidores com uma ferramenta de mapeamento inicial de startups na busca de targets com maior probabilidade de sucesso.   


2021 ◽  
Vol 4 (2(112)) ◽  
pp. 58-72
Author(s):  
Chingiz Kenshimov ◽  
Zholdas Buribayev ◽  
Yedilkhan Amirgaliyev ◽  
Aisulyu Ataniyazova ◽  
Askhat Aitimov

In the course of our research work, the American, Russian and Turkish sign languages were analyzed. The program of recognition of the Kazakh dactylic sign language with the use of machine learning methods is implemented. A dataset of 5000 images was formed for each gesture, gesture recognition algorithms were applied, such as Random Forest, Support Vector Machine, Extreme Gradient Boosting, while two data types were combined into one database, which caused a change in the architecture of the system as a whole. The quality of the algorithms was also evaluated. The research work was carried out due to the fact that scientific work in the field of developing a system for recognizing the Kazakh language of sign dactyls is currently insufficient for a complete representation of the language. There are specific letters in the Kazakh language, because of the peculiarities of the spelling of the language, problems arise when developing recognition systems for the Kazakh sign language. The results of the work showed that the Support Vector Machine and Extreme Gradient Boosting algorithms are superior in real-time performance, but the Random Forest algorithm has high recognition accuracy. As a result, the accuracy of the classification algorithms was 98.86 % for Random Forest, 98.68 % for Support Vector Machine and 98.54 % for Extreme Gradient Boosting. Also, the evaluation of the quality of the work of classical algorithms has high indicators. The practical significance of this work lies in the fact that scientific research in the field of gesture recognition with the updated alphabet of the Kazakh language has not yet been conducted and the results of this work can be used by other researchers to conduct further research related to the recognition of the Kazakh dactyl sign language, as well as by researchers, engaged in the development of the international sign language


Author(s):  
Sakshi Tyagi ◽  
Pratima Singh

Background: Electricity is considered as the basic essential unit in today’s high-tech world. The electricity demand has been increased very rapidly due to increased urbanization, smart buildings, and usage of smart devices to a large extent. Building a reliable and accurate electricity consumption prediction model becomes necessary with the increase in building energy. From recent studies, prediction models such as support vector regression (SVR), gradient boosting decision tree (GBDT), artificial neural network (ANN), random forest (RF), and extreme gradient boosting (XGBoost) have been compared for the prediction of electricity consumption and XGBoost is found to be most efficient thus leading to the motivation for the proposed research work. Objective: The objective of this research is to propose a model that performs future electricity consumption prediction for different time horizons: short term prediction and long term prediction using extreme gradient boosting method and reduce the prediction errors. In addition to this based on the prediction, best and worst predicted days are also recognized. Methods: The method used in this research is the extreme gradient boosting for future building electricity consumption prediction. The extreme gradient boosting method performs prediction for the short term and long term for different seasons. The model is trained on a household building in Paris. Results: The model is trained and tested on the dataset and it predicts accurately with the lowest errors compared to other machine learning techniques. The model predicts accurately with RMSE of 140.45 and MAE of 28 which is the least errors when compared to the baseline prediction models. Conclusion: A model that is robust to all the conditions should be built by enhancing the prediction mechanism such that the model should be dependent on less factors to make electricity consumption prediction.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243558
Author(s):  
Marcela Bergamini ◽  
Pedro Henrique Iora ◽  
Thiago Augusto Hernandes Rocha ◽  
Yolande Pokam Tchuisseu ◽  
Amanda de Carvalho Dutra ◽  
...  

Cardiovascular diseases are the leading cause of deaths globally. Machine learning studies predicting mortality rates for ischemic heart disease (IHD) at the municipal level are very limited. The goal of this paper was to create and validate a Heart Health Care Index (HHCI) to predict risk of IHD based on location and risk factors. Secondary data, geographical information system (GIS) and machine learning were used to validate the HHCI and stratify the IHD municipality risk in the state of Paraná. A positive spatial autocorrelation was found (Moran’s I = 0.6472, p-value = 0.001), showing clusters of high IHD mortality. The Support Vector Machine, which had an RMSE of 0.789 and error proportion close to one (0.867), was the best for prediction among eight machine learning algorithms after validation. In the north and northwest regions of the state, HHCI was low and mortality clusters patterns were high. By creating an HHCI through ML, we can predict IHD mortality rate at municipal level, identifying predictive characteristics that impact health conditions of these localities’ guided health management decisions for improvements for IHD within the emergency care network in the state of Paraná.


Sign in / Sign up

Export Citation Format

Share Document