Investigation of impingement cooling on a heat sink using CFD simulation

Author(s):  
Shridhar S. Thakar ◽  
Sannil Nambiar ◽  
Gaurav A. Chandavarkar ◽  
S. Senthur Prabu
2011 ◽  
Vol 80-81 ◽  
pp. 767-773
Author(s):  
Hai Gang Sun ◽  
Yong Zhou

Thermal design and the working temperature control have been a key factor in the design of electronic devices and system. In this paper, a sort of heat sink collocated with high-power IGBT module, which is commonly used in car-carrying motor control system, is designed based on thermal analysis by means of CFD simulation and computer-aided analyzing, also the influence relations of structure parameters with thermal performance are studied. With thermal control as the overall design objective, structure parameters of heat sink are determined according to the obtained relations. Further, thermal performance of the designed heat sink is simulated and analyzed in CFD software to examine the validity of the design result. In this way, a method of thermal analyzing and structure parameter design for heat sink, which is proved as an efficacious approach, is introduced and can be used to thermal design and analysis for similar products.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Zainal Arifin ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Syamsul Hadi ◽  
Rendy Adhi Rachmanto ◽  
Gabriel Setyohandoko ◽  
...  

An increase in the operating temperature of photovoltaic (PV) panels caused by high levels of solar irradiation can affect the efficiency and lifespan of PV panels. This study uses numerical and experimental analyses to investigate the reduction in the operating temperature of PV panels with an air-cooled heat sink. The proposed heat sink was designed as an aluminum plate with perforated fins that is attached to the back of the PV panel. A comprehensive computational fluid dynamics (CFD) simulation was conducted using the software ANSYS Fluent to ensure that the heat sink model worked properly. The influence of heat sinks on the heat transfer between a PV panel and the circulating ambient air was investigated. The results showed a substantial decrease in the operating temperature of the PV panel and an increase in its electrical performance. The CFD analysis in the heat sink model with an air flow velocity of 1.5 m/s and temperature of 35°C under a heat flux of 1000 W/m2 showed a decrease in the PV panel’s average temperature from 85.3°C to 72.8°C. As a consequence of decreasing its temperature, the heat sink increased the open-circuit photovoltage (VOC) and maximum power point (PMPP) of the PV panel by 10% and 18.67%, respectively. Therefore, the use of aluminum heat sinks could provide a potential solution to prevent PV panels from overheating and may indirectly lead to a reduction in CO2 emissions due to the increased electricity production from the PV system.


2021 ◽  
Vol 11 (23) ◽  
pp. 11323
Author(s):  
Sebastian Valeriu Hudișteanu ◽  
Florin Emilian Țurcanu ◽  
Nelu Cristian Cherecheș ◽  
Cătălin George Popovici ◽  
Marina Verdeș ◽  
...  

This paper presents a numerical model regarding the passive cooling of PV panels through perforated and non-perforated heat sinks. A typical PV panel was studied in a fixed position, tilted at 45 degrees from the horizontal with the wind direction towards its backside. A challenging approach was used in order to calibrate the base case of the numerical model according to the NOCT conditions. Further validation of the accuracy of the numerical simulation consisted of a comparison between the results obtained for the base case, or heat sink, with horizontal non-perforated fins and the experiments presented in the literature. Six types of heat sink attached to the backside of the PV panel were numerically studied. The analyzed configurations focused on heat sinks with both perforated and non-perforated fins that were distributed horizontally and vertically. The CFD simulation was also conducted by modeling the air volume around the PV panel in real wind conditions. The main output parameters were the average temperature and the convective heat transfer coefficient on the front and back of the PV panel. The most important effect of cooling was achieved in low wind conditions and high levels of solar radiation. For vair = 1 m/s, G = 1000 W/m2 and ambient temperature tair = 35 °C, the percentage of maximum power production achieved 83.33% for the base case, while in the best cooling scenario it reached 88.74%, assuring a rise in the power production of 6.49%.


Sign in / Sign up

Export Citation Format

Share Document