Performance characteristic of HCCI engine for different fuels

Author(s):  
Sanjeev Kumar Verma ◽  
Subhashish Gaur ◽  
Tabish Akram ◽  
Samsher ◽  
Anil Kumar
2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


2012 ◽  
Vol 5 (4) ◽  
pp. 1551-1560 ◽  
Author(s):  
Srivatsava V. Puranam ◽  
Richard R. Steeper
Keyword(s):  

Author(s):  
Jayakrishna Srinivasan ◽  
Abhishek Krishna Swamy ◽  
Pradeep Madanagopalan ◽  
Aditya Goyal ◽  
M. Santhosh Krishna ◽  
...  

2007 ◽  
Vol 12 (6) ◽  
pp. 581-589 ◽  
Author(s):  
Nan Jia ◽  
Jihong Wang ◽  
Keith Nuttall ◽  
Jianlin Wei ◽  
Hongming Xu ◽  
...  

Author(s):  
Wei-Tai Huang ◽  
Shih-Cheng Yang ◽  
Wen-Hsien Ho ◽  
Jinn-Tsong Tsai

Multiple performance objectives in turn-mill multitasking machining are investigated using the Taguchi method combined with the fuzzy theory. Using these two methods, optimized processing parameters can be rapidly identified to obtain optimized dimensional accuracy and geometrical shape angle, thus reducing machining cost and time. Herein, control factors for determining the single objective optimization parameter using the Taguchi robust process L9(34) orthogonal table were spindle speed (rpm), feed (mm/min), C-axis brake pressure (kg/cm2), axial cutting depth (mm), with dimensional accuracy and geometrical shape angle as objective characteristics. Then, signal-to-noise ratios of different groups were generated by gray correlation according to the experimental sequence to obtain the gray correlation coefficient for the calculation of the multiple performance characteristic index (MPCI). The MPCI results demonstrated that optimized dimensional accuracy was 0.005 mm and optimized geometrical shape angle was 0.004°. The optimized MPCI parameters were A3 (4000 rpm), B3 (250 mm/min), C3 (30 kg/cm2), and D3 (1.5 mm). It can reduce the processing for burr elimination and tool wear reduction by MPCI optimized process parameters.


Author(s):  
Jason S. Souder ◽  
Parag Mehresh ◽  
J. Karl Hedrick ◽  
Robert W. Dibble

Homogeneous charge compression ignition (HCCI) engines are a promising engine technology due to their low emissions and high efficiencies. Controlling the combustion timing is one of the significant challenges to practical HCCI engine implementations. In a spark-ignited engine, the combustion timing is controlled by the spark timing. In a Diesel engine, the timing of the direct fuel injection controls the combustion timing. HCCI engines lack such direct in-cylinder mechanisms. Many actuation methods for affecting the combustion timing have been proposed. These include intake air heating, variable valve timing, variable compression ratios, and exhaust throttling. On a multi-cylinder engine, the combustion timing may have to be adjusted on each cylinder independently. However, the cylinders are coupled through the intake and exhaust manifolds. For some of the proposed actuation methods, affecting the combustion timing on one cylinder influences the combustion timing of the other cylinders. In order to implement one of these actuation methods on a multi-cylinder engine, the engine controller must account for the cylinder-to-cylinder coupling effects. A multi-cylinder HCCI engine model for use in the control design process is presented. The model is comprehensive enough to capture the cylinder-to-cylinder coupling effects, yet simple enough for the rapid simulations required by the control design process. Although the model could be used for controller synthesis, the model is most useful as a starting point for generating a reduced-order model, or as a plant model for evaluating potential controllers. Specifically, the model includes the dynamics for affecting the combustion timing through exhaust throttling. The model is readily applicable to many of the other actuation methods, such as variable valve timing. Experimental results validating the model are also presented.


2014 ◽  
Vol 694 ◽  
pp. 54-58
Author(s):  
Ling Zhe Zhang ◽  
Ya Kun Sun ◽  
Su Li ◽  
Qing Ping Zheng

A reduced chemical kinetic model (103species and 468 reactions) for new low-RON(research octane number) gasoline surrogate fuels has been proposed. Simulations explored for ignition delay time have been compared with experimental data in shock tubes at pressure of 10atm-55 atm and temperatue of 600-1400 K (fuel/air equivalence ratio=0.5,1.0,2.0 and EGR rate=0, 20%). The simulation data presented 15% enlargement compared with experiments showed applicability of the new kinetic mode in this work. A combustion simulation model has been build for HCCI(homogeneous charge compression ignition) engine with Chemkin-pro. The effects of different air inlet temperature, inlet pressure, engine speed and the fuel air equivalence ratio on the combustion characteristics of the fuel were researched. The results indicated the combustion in an HCCI engine worked sufficiently with lean mixtures and low speed. Meanwhile the material strength could be influenced when the inlet conditions changed. This helps to promote the low-RON gasoline surrogate fuel application in the HCCI engine.


Sign in / Sign up

Export Citation Format

Share Document