Simulation of HCCI Combustion Characteristics for Low RON Gasoline Surrogate Fuels

2014 ◽  
Vol 694 ◽  
pp. 54-58
Author(s):  
Ling Zhe Zhang ◽  
Ya Kun Sun ◽  
Su Li ◽  
Qing Ping Zheng

A reduced chemical kinetic model (103species and 468 reactions) for new low-RON(research octane number) gasoline surrogate fuels has been proposed. Simulations explored for ignition delay time have been compared with experimental data in shock tubes at pressure of 10atm-55 atm and temperatue of 600-1400 K (fuel/air equivalence ratio=0.5,1.0,2.0 and EGR rate=0, 20%). The simulation data presented 15% enlargement compared with experiments showed applicability of the new kinetic mode in this work. A combustion simulation model has been build for HCCI(homogeneous charge compression ignition) engine with Chemkin-pro. The effects of different air inlet temperature, inlet pressure, engine speed and the fuel air equivalence ratio on the combustion characteristics of the fuel were researched. The results indicated the combustion in an HCCI engine worked sufficiently with lean mixtures and low speed. Meanwhile the material strength could be influenced when the inlet conditions changed. This helps to promote the low-RON gasoline surrogate fuel application in the HCCI engine.

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Hamisu A Dandajeh ◽  
Talib O Ahmadu

This paper presents an experimental investigation on the influence of engine speed on the combustion characteristics of a Gardener compression ignition engine fueled with rapeseed methyl esther (RME). The engine has a maximum power of 14.4 kW and maximum speed of 1500 rpm. The experiment was carried out at speeds of 750 and 1250 rpm under loads of 4, 8, 12, 16 and 18 kg. Variations of cylinder pressure with crank angle degrees and cylinder volume have been examined. It was found that RME demonstrated short ignition delay primarily due to its high cetane number and leaner fuel properties (equivalence ratio (φ) = 0.22 at 4kg). An increase in thermal efficiency but decrease in volumetric efficiency was recorded due to increased brake loads. Variations in fuel mass flow rate, air mass flow rate, exhaust gas temperatures and equivalence ratio with respect to brake mean effective pressure at engine speeds of 750 and 1250 rpm were also demonstrated in this paper. Higher engine speed of 1250 rpm resulted in higher fuel and air mass flow rates, exhaust temperature, brake power and equivalent ratio but lower volumetric efficiency. Keywords— combustion characteristics, engine performance, engine speed, rapeseed methyl Esther


2005 ◽  
Author(s):  
Chitralkumar V. Naik ◽  
William J. Pitz ◽  
Charles K. Westbrook ◽  
Magnus Sjöberg ◽  
John E. Dec ◽  
...  

2020 ◽  
Author(s):  
Muhammad Faizullizam Roslan ◽  
Ibham Veza ◽  
Mohd Farid Muhamad Said

Homogeneous Charge Compression Ignition (HCCI) is a commonly research new combustion mode due to its advantages over conventional combustion in internal combustion engine such as higher thermal efficiency as well as lower particulate matter (PM) and nitrogen oxides (NOx) emission. However, combustion phasing control difficulty is the main challenge in order to achieve this HCCI combustion due to the absence of direct auto-ignition control. The aim of this study is to investigate the effects of engine load conditions, intake charge temperature and exhaust gas recirculation (EGR) rate numerically on the combustion characteristics of HCCI engine in a single-cylinder and four-stroke engine fuelled with n-butanol. Predictive one-dimensional engine cycle simulation with single-zone model is employed in this study. A chemical kinetic mechanism of n-butanol is used to in this model to capture the chemical reaction process during the combustion. It was found that these parameters play important roles towards the combustion phasing of the HCCI engine as well as the in-cylinder pressure. This HCCI model is able to predict the trend of the combustion characteristics comprehensively with the variation of these critical parameters resulting in a good agreement with previous HCCI studies.


Author(s):  
Jon P. McDonald ◽  
Arthur M. Mellor

Semi–empirical characteristic time models (CTMs) for NOx emissions index (EI) and lean blowoff are used in the design of an inlet condition matrix for measurement of NOxEI from a lean premixed combustor. Such models relate either NOxEI or the weak extinction limit to times representing relevant physical and chemical processes in the combustor. Lean premixed (LP) natural gas/air combustion is considered for the following conditions: inlet temperature, 300–800 K; combustor pressure, 1–30 atm; and equivalence ratio, 0.5–0.7. The NOx model is used to determine combinations of inlet conditions corresponding to greatest NOx sensitivity. A dependence of NOx emissions on pressure is included in the model. Emissions of oxides of nitrogen are found to he most sensitive to variations in inlet temperature and combustor pressure, in the 560–800 K and 20–30 atm ranges, respectively, while sensitivity to variations in equivalence ratio is substantial over the entire range considered. Thus it is found that operating conditions for high thermal efficiency in LP turbine combustors conflict with the goal of lowering NOx emissions, a result consistent with thermal NOx from conventional, diffusion flame combustors. A lean blowoff model is used to estimate the lowest equivalence ratio at which a flame can he held, as well as to determine whether a flame can be stabilised at the operating conditions suggested by the NOx sensitivity analysis. The results suggest a nominal lower limit on equivalence ratio of 0.4, and that a flame can be held for most of the combinations of inlet conditions suggested by the NOx sensitivity analysis. Autoignition of the fuel/air mixture is also considered in relation to the location and/or design of the premixing system. The current NOx CTM is applied to LP natural gas fired data from the literature. A model modification, thought to better represent the fluid mechanics relevant to LP NOx formation, is applied, and its implications discussed.


Sign in / Sign up

Export Citation Format

Share Document