scholarly journals WITHDRAWN: Validation of FEM based numerical model of hydrodynamic journal bearing system with experimentation

Author(s):  
Sanjay Sharma ◽  
Varun Dutta ◽  
Jagjit Singh Maan ◽  
R.K. Awasthi
Author(s):  
L Jeddi ◽  
M El Khlifi ◽  
D Bonneau

A numerical procedure is developed for the analysis of thermohydrodynamic behaviour of the hydrodynamic (HD) flow in the groove of a journal bearing. The Navier-Stokes and energy equations are written in terms of the primitive variables u, v, p, and T and solved simultaneously using the incremental load method and the finite element formulation. The numerical model is applied to the analysis of the velocities, the pressure, and the temperature patterns that characterize the lubricant flow in the HD groove. The effects of the runner velocity and the feeding pressure are investigated.


2011 ◽  
Vol 121-126 ◽  
pp. 1966-1971
Author(s):  
Wu Bin Xu ◽  
De Jian Zhou ◽  
Peter Ogrodnik ◽  
Mike Goodwin

The manufacturing tolerances of a hydrodynamic journal bearing system are inevitable in manufacturing process. To examine and understand the effect of manufacturing tolerances on the system stability can help engineers to confidently choose reasonable tolerances at design stage. This study presented a theoretical analysis method to determine and compare the effects of dimensional manufacturing tolerances and journal out-of-roundness on system stability by Taguchi method. The results show that the journal out-of-roundness has the most significant effect on the system stability and the journal out-of-roundness appears to stabilize the system. The authors suggest that both dimensional manufacturing tolerances and journal roundness should be taken into account in the design of cylindrical journal bearings.


Author(s):  
Bing Li ◽  
Dejian Zhou ◽  
Peter Ogrodnik ◽  
Wubin Xu

The present study investigates the effect of cylindricity error on the performance of hydrodynamic journal bearing systems. Two types of cylindricity errors of the journal, namely the drum shape distribution cylindricity error (DCE) and the saddle shape distribution cylindricity error (SCE), are considered. The Legendre–Fourier model is used to characterize the profile of each journal. Based on the nonlinear analysis method, the dynamic characteristics and stability of hydrodynamic journal bearing systems are analyzed. The results indicate that cylindricity error affects the system stability, and the effect is related to the type and level of the error. DCE used with a certain range of operating speed and load is not harmful and is even beneficial to the stability of hydrodynamic journal bearing systems; conversely, SCE decreases the system stability. When the Sommerfeld number is between 0.02 and 0.05, cylindricity errors have a minimal effect on the system stability. Additionally, the results indicate that the effect of cylindricity error on the bearing system is more significant than that of roundness error.


2015 ◽  
Vol 85 (7) ◽  
pp. 855-875 ◽  
Author(s):  
Di Hei ◽  
Yanjun Lu ◽  
Yongfang Zhang ◽  
Fuxi Liu ◽  
Chao Zhou ◽  
...  

2017 ◽  
Vol 69 (5) ◽  
pp. 754-760 ◽  
Author(s):  
Nimeshchandra S. Patel ◽  
Dipak Vakharia ◽  
Gunamani Deheri

Purpose This paper aims to investigate the performance of a ferrofluid-based hydrodynamic journal bearing system. Design/methodology/approach This paper presents a new design of ferrofluid-based hydrodynamic journal bearing. An experimental set-up consisting of a magnetic shaft along with a brass bearing was modified and developed. A permanent magnet was used to make the selected shaft material magnetic. The load and speed were varied to conduct the analyses for different test conditions. Findings The paper provides information about a design of ferrofluid-based journal bearing and its improved performances. For moderate to higher loads at different shaft speeds, it was found that because of the magnetization effect, the maximum film pressure in case of a ferrofluid lubricant increased up to approximately 60 per cent, compared with that of the conventional lubricant-based journal bearing system. Besides, the temperature rise was found smaller for ferrofluid lubricants, thus making the system cooler while running. Originality/value This paper offers a new design of magnetic bearing system for the experimental analysis by utilizing a magnetic shaft with a non-magnetic bearing. The present ferrofluid-based bearing design is less complicated from manufacturing point of view.


Author(s):  
Niranjan Singh ◽  
RK Awasthi

This paper concerns with theoretical investigation to predict the influence of cylindrical textures on the static and dynamic performance characteristics of hydrodynamic journal bearing system and the performance is compared with smooth surface bearing. The Reynolds equation governing the fluid–film between the journal and the bearing surface is solved numerically with the assistance of finite element method and the performance characteristics are evaluated as a function of eccentricity ratio, dimple depth and its location. In this study, four journal bearing configurations viz: smooth (non-textured), full-textured, partially textured-I, and partially textured-II are considered for the evaluation of theoretical results. The simulated results indicate that the influence of surface textures is more significant when the textures were created in upstream zone of 126°–286° and dimple aspect ratio nearly 1.0.


2010 ◽  
Vol 139-141 ◽  
pp. 2662-2667
Author(s):  
Wu Bin Xu ◽  
Peter J. Ogrodnik ◽  
Mike J. Goodwin ◽  
Gordon Bancroft

From a manufacturing viewpoint, the manufacturing tolerances of a hydrodynamic journal bearing system are inevitable. To examine and understand the effect of manufacturing tolerances on dynamic characteristics of a hydrodynamic journal bearing system can help engineers to confidently choose reasonable tolerances at design stage or to enable the system with certain manufacturing tolerances to operate closer to the theoretical predictions. This study presented a theoretical analysis method to determine and demonstrate the effect of manufacturing tolerances on bearing stiffness and damping, in which the concepts of limits, tolerances and nominal dimensions are introduced in. The results show that the manufacturing tolerances of a hydrodynamic journal bearing system have profound influences on the bearing stiffness and damping, and the magnitude of effect depends on system design parameters in the form of Sommerfeld number. The presented method will better predict system stiffness and damping characteristics.


Sign in / Sign up

Export Citation Format

Share Document