Experimental investigation on single cylinder four stroke tri-charged diesel engine using pyrolysis oil at different proportions

Author(s):  
Bisane Rajesh ◽  
Kale Rajesh
Author(s):  
P M Bhatt

Increasing industrialization and motorization led to a significant rise in demand of petroleum products. As these are the non-renewable resources, it will be troublesome to predict the availability of these resources in the future, resulting in uncertainty in its supply and price and is impacting growing economies like India importing 80% of the total demand of the petroleum products. Many attempts have been made by different researchers to find out alternate fuels for Internal Combustion engines. Many alternate fuels like Biodiesel, LPG (Liquefied Petroleum Gas), CNG (Compressed Natural Gas) and Alcohol are being used nowadays by different vehicles. In this context pyrolysis of scrap tyres can be used effectively to produce oil, thereby solving the problem of waste tyre disposal. In the present study, Experimental investigations were carried out to evaluate the performance and emission characteristics of a single cylinder diesel engine fueled by TPO10, TPO15, and TPO20 at a crank angle 280 before TDC (Top Dead Centre) and injection pressure of 180 bar keeping the blend quality by controlling the density and viscosity of tyre pyrolysis oil within permissible limit of euro IV diesel requirement. The performance and emission results were analyzed and compared with that of diesel fuel operation. The results of investigations indicate that the brake thermal efficiency of the TPO - DF blend decreases by 4 to 8%. CO emissions are slightly higher but within permissible limit of euro IV emission standards. HC emissions are higher by about 40 to 60% at partial load whereas smoke opacity is lower by about 14% to 22% as compared to diesel fuel.


Author(s):  
R. Vinod ◽  
B.L. Keerthi ◽  
Y.H. Basavarajappa ◽  
S. Karthik

Extensive usage of automobiles with conventional fuels has led to excessive air pollution. This adverse situation initiated a need for developing an alternative fuels which can resolve pollution problems and act as a substitute to conventional fuel. One such alternative identified is biodiesel. In this study waste cooking oil and fish oil is used to prepare blends of F10, F20, F30 and C10, C20, C30. These blends are used to evaluate the performance and emission of a computerized P244 Kirloskar single cylinder four stroke water cooled diesel engine.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Wei Fang ◽  
Junhua Fang ◽  
David B. Kittelson ◽  
William F. Northrop

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion using port injection of a less reactive fuel and early-cycle direct injection (DI) of a more reactive fuel has been shown to yield both high thermal efficiency and low NOX and soot emissions over a wide engine operating range. Conventional and alternative fuels such as gasoline, natural gas, and E85 as the lower reactivity fuel in RCCI have been studied by many researchers; however, published experimental investigations of hydrous ethanol use in RCCI are scarce. Making greater use of hydrous ethanol in internal combustion engines has the potential to dramatically improve the economics and life cycle carbon dioxide emissions of using bioethanol. In this work, an experimental investigation was conducted using 150 proof hydrous ethanol as the low reactivity fuel and commercially available diesel as the high reactivity fuel in an RCCI combustion mode at various load conditions. A modified single-cylinder diesel engine was used for the experiments. Based on previous studies on RCCI combustion by other researchers, early-cycle split-injection strategy of diesel fuel was used to create an in-cylinder fuel reactivity distribution to maintain high thermal efficiency and low NOX and soot emissions. At each load condition, timing and mass fraction of the first diesel injection was held constant, while timing of the second diesel injection was swept over a range where stable combustion could be maintained. Since hydrous ethanol is highly resistant to auto-ignition and has large heat of vaporization, intake air heating was needed to obtain stable operations of the engine. The study shows that 150 proof hydrous ethanol can be used as the low reactivity fuel in RCCI through 8.6 bar indicated mean effective pressure (IMEP) and with ethanol energy fraction up to 75% while achieving simultaneously low levels of NOX and soot emissions. With increasing engine load, less intake heating is needed and exhaust gas recirculation (EGR) is required to maintain low NOX emissions.


Sign in / Sign up

Export Citation Format

Share Document