Investigation on process parameters for injection moulding of nylon 6/SiC and nylon 6/B4C composites

Author(s):  
G. Boopathy ◽  
J. Udaya Prakash ◽  
K. Gurusami ◽  
J.V. Sai Prasanna Kumar
2013 ◽  
Vol 554-557 ◽  
pp. 1669-1682 ◽  
Author(s):  
Kam Hoe Yin ◽  
Hui Leng Choo ◽  
Dunant Halim ◽  
Chris Rudd

Process parameters optimisation has been identified as a potential approach to realise a greener injection moulding process. However, reduction in the process energy consumption does not necessarily imply a good part quality. An effective multi-response optimisation process can be demanding and often relies on extensive operational experience from human operators. Therefore, this research focuses on an attempt to develop a more user-friendly approach which could simultaneously deal with the requirements of energy efficiency and part quality. This research proposes a novel approach using a dynamic Shainin Design of Experiment (DOE) methodology to determine an optimal combination of process parameters used in the injection moulding process. The Shainin DOE method is adopted to pinpoint the most important factors on energy consumption and the targeted part quality whereas the ‘dynamic’ term refers to the signal-response system. The effectiveness of the proposed approach was illustrated by investigating the influence of various dominant parameters on the specific energy consumption (SEC) and the Charpy impact strength (CIS) of polypropylene (PP) material after being injection-moulded into impact test specimens. From the experimental results, barrel temperature was identified as the signal factor while mould temperature and cooling time were used as control factors in the full factorial experiments. Then, response function modelling (RFM) was built to characterise the signal-response relationship as a function of the control factors. Finally, RFM led to a trade-off solution where reducing part-to-part variation for CIS resulted in an increase of SEC. Therefore, the research outcomes have demonstrated that the proposed methodology can be practically applied at the factory shop floor to achieve different performance output targets specified by the customer or the manufacturer’s intent.


2019 ◽  
Vol 25 (9) ◽  
pp. 1493-1505 ◽  
Author(s):  
Anurag Bagalkot ◽  
Dirk Pons ◽  
Don Clucas ◽  
Digby Symons

Purpose Polymer rapid tooling (PRT) inserts can be used as injection moulding (IM) cavities for prototyping and low volume production but lack the robustness of metal inserts. Metal inserts can withstand high injection pressure and temperature required, whereas PRT inserts may fail under similar parameters. The current method of parameter setting starts with using the highest pressure setting on the machine and then fine-tuning to optimize the process parameters. This method needs modification, as high injection pressures and temperatures can damage the PRT inserts. There is a need for a methodical process to determine the upper limits of moulding parameters that can be used without damaging the PRT inserts. Design/methodology/approach A case study analysis was performed to investigate the causes of failure in a PRT insert. From this, a candidate set-up process was developed to avoid start-up failure and possibly prolong tool life. This was then tested on a second mould, which successfully avoided start-up failure and moulded 54 parts before becoming unusable due to safety issues. Findings Process parameters that are critical for tool life are identified as mould temperature, injection pressure, injection speed, hold pressure and cooling time. Originality/value This paper presents a novel method for setting IM process parameters for PRT inserts. This has the potential to prevent failure at start up when using PRT inserts and possibly extend the operating life of the PRT inserts.


2013 ◽  
Vol 748 ◽  
pp. 544-548 ◽  
Author(s):  
Nik Mizamzul Mehat ◽  
Shahrul Kamaruddin ◽  
Abdul Rahim Othman

This paper presents the original development of an experimental approach in studying the multiple tensile characterizations as key quality characteristics for several different plastic gear materials related to various parameters in injection moulding process. In this study, emphases are given on a new low-cost mechanism for the testing of the injection moulded plastic spur gear specimens with various teeth module. The testing fixture are developed and validated to provide uniform state of tension with series of plastic gear specimens produced in accordance with the systematically designed of experiment. The effects of changes in the process parameters including melt temperature, packing pressure, packing time and cooling time at three different levels on the elongation at break and ultimate strength of plastic gear is evaluated and studied through the proposed experimental approach.


2019 ◽  
Vol 969 ◽  
pp. 775-780
Author(s):  
Rajendra Khavekar ◽  
Hari Vasudevan ◽  
Gosar Vimal

In this Paper, the application of Taguchi Method (TM) on the process parameters of Injection Moulding of Polybutylene Terephthalate (PBT) is presented. The influence of process parameters, such as Injection Pressure, Suckback Pressure, Injection Time, Cooling Time, Zone 1 Temperature & Zone 2 Temperature (Barrel Temperatures) on Dark Spots and Short Shots (defects) were investigated using the Orthogonal Array L16 of Taguchi Method for 6 factors at 2 levels each with the response being percent defectives. It was found that Injection Pressure, Injection Time & Zone 1 Temperature had a major effect on the response. After the application of Taguchi Method, the rejection rate dropped down to 5.84% from 11.33%, which is a 48.45% reduction.


Sign in / Sign up

Export Citation Format

Share Document