One-step electrodeposition synthesis of Ni/NiS @NF catalyst on nickel foam (NF) for hydrogen evolution reaction

2021 ◽  
Vol 511 ◽  
pp. 111694
Author(s):  
Liang Xiao ◽  
Pei Yao ◽  
Tao Xue ◽  
Fang Li
2022 ◽  
Author(s):  
Jianmin Zhu ◽  
Lishuang Xu ◽  
Shuai Zhang ◽  
Ying Yang ◽  
Licheng Huang ◽  
...  

One-step hydrothermal method to synthesize a stable ZnCo2(OH)F nanorod array structure supported by nickel foam.


2018 ◽  
Vol 47 (29) ◽  
pp. 9871-9876 ◽  
Author(s):  
Furong Yu ◽  
Huiling Yao ◽  
Bo Wang ◽  
Kewei Zhang ◽  
Zhengyuan Zhang ◽  
...  

A one-step annealing strategy for the synthesis of Ni3S2 nanowires through N doping towards vigorous HER performance both in acidic and alkaline solution.


2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


2021 ◽  
Author(s):  
Nanasaheb M. Shinde ◽  
Siddheshwar D. Raut ◽  
Balaji G. Ghule ◽  
Krishna Chaitanya Gunturu ◽  
James J. Pak ◽  
...  

A promising electrode for hydrogen evolution reaction (HER) has been prepared via a reduction process to form NiF2 nanorod arrays directly grown on a 3D nickel foam.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 929 ◽  
Author(s):  
Sajjad Hussain ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Rana Afzal ◽  
Wooseok Song ◽  
...  

To find an effective alternative to scarce, high-cost noble platinum (Pt) electrocatalyst for hydrogen evolution reaction (HER), researchers are pursuing inexpensive and highly efficient materials as an electrocatalyst for large scale practical application. Layered transition metal dichalcogenides (TMDCs) are promising candidates for durable HER catalysts due to their cost-effective, highly active edges and Earth-abundant elements to replace Pt electrocatalysts. Herein, we design an active, stable earth-abundant TMDCs based catalyst, WS(1−x)Sex nanoparticles-decorated onto a 3D porous graphene/Ni foam. The WS(1−x)Sex/graphene/NF catalyst exhibits fast hydrogen evolution kinetics with a moderate overpotential of ~−93 mV to drive a current density of 10 mA cm−2, a small Tafel slope of ~51 mV dec−1, and a long cycling lifespan more than 20 h in 0.5 M sulfuric acid, which is much better than WS2/NF and WS2/graphene/NF catalysts. Our outcomes enabled a way to utilize the TMDCs decorated graphene and precious-metal-free electrocatalyst as mechanically robust and electrically conductive catalyst materials.


2021 ◽  
Author(s):  
He-qiang Chang ◽  
Guo-Hua Zhang ◽  
Kuo-Chih Chou

Abstract In order to evaluate the effect of precursors and synthesis strategies on catalytic ability of Mo2C in the hydrogen evolution reaction (HER), four kinds of Mo2C were synthesized using two kinds of MoO3 by two strategies. Compared with the one-step direct carbonization strategy, Mo2C with a large special surface area and a better performance could be synthesized by the two-step strategy composed of a nitridation reaction and a carbonization reaction. Additionally, the as-prepared porous Mo2C nanobelts (NBs) exhibit good electrocatalytic performance with a small overpotential of 165 mV (0.5 M H2SO4) and 124 mV (1 M KOH) at 10 mA cm-2, as well as a Tafel slope of 58 mV dec-1 (0.5 M H2SO4) and 59 mV dec-1 (1 M KOH). The excellent catalytic activity is ascribed to the nano crystallites and porous structure. What’s more, the belt structure also facilitates the charge transport in the materials during the electrocatalytic HER process. Therefore, the two-step strategy provides a new insight into the structural design with superior performance for electrocatalytic HER.


Sign in / Sign up

Export Citation Format

Share Document