No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells

2012 ◽  
Vol 362 (1-2) ◽  
pp. 149-156 ◽  
Author(s):  
Malene Olesen ◽  
Vibe Skov ◽  
Mie Mechta ◽  
Birgitte Hviid Mumm ◽  
Lars Melholt Rasmussen
2007 ◽  
Vol 292 (2) ◽  
pp. H1058-H1064 ◽  
Author(s):  
Ping Olesen ◽  
Kirsten Nguyen ◽  
Lise Wogensen ◽  
Thomas Ledet ◽  
Lars Melholt Rasmussen

Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with β-glycerophosphate. The influence of insulin (200 μU/ml or 1,000 μU/ml) on calcification was judged by measuring calcium content in the cell layer and by von Kossa staining. OPG was measured in the medium by ELISA. Histochemistry was used for determination of alkaline phosphatase (ALP). Bone sialoprotein (BSP) and OPG mRNA expressions were done by RT-PCR. β-Glycerophosphate was able to induce calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 μU/ml) accelerated the calcification, whereas lower concentrations (200 μU/ml) did not. Calcified cells expressed ALP and BSP activity in high levels. In conclusion, high concentration of insulin enhances in vitro-induced calcification in VSMCs. Altered OPG levels during the calcification raise the possibility that OPG may have a potent function in regulating the calcification process or it may represent a consequence of mineralization. Effects of insulin and modulations by OPG on the calcification process in arterial cells may play a role in the development of calcifications as part of the diabetic macroangiopathy.


1989 ◽  
Vol 61 (03) ◽  
pp. 517-521 ◽  
Author(s):  
Walter E Laug ◽  
Ruedi Aebersold ◽  
Ambrose Jong ◽  
Willian Rideout ◽  
Barbara L Bergman ◽  
...  

SummaryLarge arteries have a natural resistance to tumor cell invasion thought to be due to the production of protease inhibitors. Vascular smooth muscle cells (VSMC) representing the major cellular part of arteries were isolated from human aortas and grown in tissue culture. These cells were found to produce large amounts of inhibitors of plasminogen activators (PA). Fractionation of VSMC-conditioned medium by heparin-affigel chromatography separated three immunologically and functionally distinct PA inhibitors (PAI), namely PAI-1, PAI-2 and protease-nexin I. The three inhibitors were characterized by functional assays and immunoblotting. PA inhibitor 2 (PAI-2) had little affinity for heparin, whereas PA inhibitor 1 (PAI-l) bound to heparin and was eluted from the column at NaCl concentrations of 0. 1 to 0.35 M. Protease-nexin I, eluted at NaCl concentrations of 0.5 M and higher. Most of the PAI-1 was present in the latent, inactive form. PAI-1 was further purified by ion exchange chromatography on a Mono-Q column. Partial sequencing of the purified PAI-1 confirmed its nature by matching completely with the sequence deduced from the cDNA nucleotide sequence of endothelial cell PAI-1. Thus, human VSMC produce all three presently known PAI and these can be separated in a single heparin affinity purification step.


1995 ◽  
Vol 74 (03) ◽  
pp. 980-986 ◽  
Author(s):  
Valérie B Schini-Kerth ◽  
Beate Fißithaler ◽  
Thomas T Andersen ◽  
John W Fenton ◽  
Paul M Vanhoutte ◽  
...  

SummaryProteolytically active forms of thrombin (α- and γ-thrombin) and thrombin receptor peptides inhibited the release of nitrite, a stable endproduct of nitric oxide, evoked by interleukin-1 β(IL-1 β) in cultured vascular smooth muscle cells while proteolytically inactive forms [D-Phe-Pro-Arg chloromethyl ketone-α-thrombin (PPACK-α- thrombin) and diisopropylphosphoryl-α-thrombin (DIP-α-thrombin)] had either no or only minimal inhibitory effects. Under bioassay conditions, perfusates from columns containing IL-1 β-activated vascular smooth muscle cells or cells treated with IL-1βplus PPACK-α-thrombin relaxed detector blood vessels. These relaxations were abolished by the inhibitor of nitric oxide synthesis, NG-nitro-L arginine. No relaxations were obtained with untreated cells or IL-1 β-treated cells in the presence of α-thrombin. The expression of inducible nitric oxide synthase mRNA and protein in vascular smooth muscle cells by IL-1 β was impaired by α-thrombin. These results demonstrate that thrombin regulates the expression of the inducible nitric oxide synthase at a transcriptional level via the proteolytic activation of the thrombin receptor in vascular smooth muscle cells


1985 ◽  
Vol 53 (02) ◽  
pp. 165-169 ◽  
Author(s):  
Walter E Laug

SummaryTPure cultures of bovine endothelial cells (EC) produce and secrete large amounts of plasminogen activators (PA). Cocultivation of EC with vascular smooth muscle cells (SMC) resulted in a significant decrease of PA activities secreted by the EC, whereas the cellular PA activities remained unaffected. Secreted PA activities were absent in the growth medium as long as the SMC to EC ratio was 2:1 or higher. The PA inhibitory activity of the SMC was rapid and cell-to-cell contact was not necessary.The PA inhibitory activity was present in homogenates of SMC as well as in the medium conditioned by them but not in the extracellular matrix elaborated by these cells. Serum free medium conditioned by SMC neutralized both tissue type (t-PA) and urokinase like (u-PA) plasminogen activators. Gel electrophoretic analysis of SMC conditioned medium followed by reverse fibrin autography demonstrated PA inhibitory activities in the molecular weight (Mr) range of 50,000 to 52,000 similar to those present in media conditioned by bovine endothelial cells or fibroblasts. Regular fibrin zymography of SMC conditioned medium incubated with u-PA or t-PA revealed the presence of a component with a calculated approximate Mr of 45,000 to 50,000 which formed SDS resistant complexes with both types of PA.These data demonstrate that vascular SMC produce and secrete (a) inhibitor(s) of PAs which may influence the fibrinolytic potential of EC.


2013 ◽  
Author(s):  
Dongxing Zhu ◽  
Neil Mackenzie ◽  
Colin Farquharson ◽  
Vicky MacRae

Sign in / Sign up

Export Citation Format

Share Document