scholarly journals Role of Molecular Diagnostics in the Management of Infectious Disease Emergencies

2012 ◽  
Vol 96 (6) ◽  
pp. 1067-1078 ◽  
Author(s):  
Neel K. Krishna ◽  
Kenji M. Cunnion
2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1396-1399
Author(s):  
Disha Bhatero ◽  
Punam Sawarkar ◽  
Gaurav Sawarkar

Covid-19 is an infectious disease caused by novel Coronavirus. The overall prevalence rate of Covid-19 in Worldwide ( 9.94M )& it is (529 K) & (153 K) in India and Maharashtra. This situation can be considered under JanapadodhwansaVyadhi in Ayurveda. The primary purpose of Ayurveda  is the prevention of the disease in healthy individuals and eradication of disease, which are curable. Immunity comes under the Vyadhikshamatva. Further, Covid-19 infection is correlated with Vataj-Kaphaj Jwara. In Ayurveda Rasayana therapy to boost up immunity (Bala  & Vyadhikshamatva). The present study aimed to explore the concept of infectious disease and its prevention through different lifestyles described in Ayurveda. The above need-based information is collected from various Ayurvedicliterature (Laghutrayee, Bruhatryayi) along with numerous research articles from databases, such as PubMed, Google Scholar. All collected data were depicted in narrative form and tabular manner under different heads. Considering the above aspect in the prevention of Covid-19, the role of Ayurveda intervention may be proved more beneficial in Covid-19. Further, adoption of code of conduct may efficiently overcome the current pandemic situation by maintaining good immunity & implementation of Ahar, Vihar Vidhis, Dincharya, and Rutucharya& Sadvritta  for improving disease resistance.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Steve J. Bickley ◽  
Ho Fai Chan ◽  
Ahmed Skali ◽  
David Stadelmann ◽  
Benno Torgler

Abstract Background The ongoing COVID-19 pandemic has highlighted the vast differences in approaches to the control and containment of coronavirus across the world and has demonstrated the varied success of such approaches in minimizing the transmission of coronavirus. While previous studies have demonstrated high predictive power of incorporating air travel data and governmental policy responses in global disease transmission modelling, factors influencing the decision to implement travel and border restriction policies have attracted relatively less attention. This paper examines the role of globalization on the pace of adoption of international travel-related non-pharmaceutical interventions (NPIs) during the coronavirus pandemic. This study aims to offer advice on how to improve the global planning, preparation, and coordination of actions and policy responses during future infectious disease outbreaks with empirical evidence. Methods and data We analyzed data on international travel restrictions in response to COVID-19 of 185 countries from January to October 2020. We applied time-to-event analysis to examine the relationship between globalization and the timing of travel restrictions implementation. Results The results of our survival analysis suggest that, in general, more globalized countries, accounting for the country-specific timing of the virus outbreak and other factors, are more likely to adopt international travel restrictions policies. However, countries with high government effectiveness and globalization were more cautious in implementing travel restrictions, particularly if through formal political and trade policy integration. This finding is supported by a placebo analysis of domestic NPIs, where such a relationship is absent. Additionally, we find that globalized countries with high state capacity are more likely to have higher numbers of confirmed cases by the time a first restriction policy measure was taken. Conclusions The findings highlight the dynamic relationship between globalization and protectionism when governments respond to significant global events such as a public health crisis. We suggest that the observed caution of policy implementation by countries with high government efficiency and globalization is a by-product of commitment to existing trade agreements, a greater desire to ‘learn from others’ and also perhaps of ‘confidence’ in a government’s ability to deal with a pandemic through its health system and state capacity. Our results suggest further research is warranted to explore whether global infectious disease forecasting could be improved by including the globalization index and in particular, the de jure economic and political, and de facto social dimensions of globalization, while accounting for the mediating role of government effectiveness. By acting as proxies for a countries’ likelihood and speed of implementation for international travel restriction policies, such measures may predict the likely time delays in disease emergence and transmission across national borders.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Maria C. Barbosa-Silva ◽  
Maiara N. Lima ◽  
Denise Battaglini ◽  
Chiara Robba ◽  
Paolo Pelosi ◽  
...  

AbstractInfectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood–brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation. Graphic abstract


Author(s):  
Sina Shaffiee Haghshenas ◽  
Behrouz Pirouz ◽  
Sami Shaffiee Haghshenas ◽  
Behzad Pirouz ◽  
Patrizia Piro ◽  
...  

Nowadays, an infectious disease outbreak is considered one of the most destructive effects in the sustainable development process. The outbreak of new coronavirus (COVID-19) as an infectious disease showed that it has undesirable social, environmental, and economic impacts, and leads to serious challenges and threats. Additionally, investigating the prioritization parameters is of vital importance to reducing the negative impacts of this global crisis. Hence, the main aim of this study is to prioritize and analyze the role of certain environmental parameters. For this purpose, four cities in Italy were selected as a case study and some notable climate parameters—such as daily average temperature, relative humidity, wind speed—and an urban parameter, population density, were considered as input data set, with confirmed cases of COVID-19 being the output dataset. In this paper, two artificial intelligence techniques, including an artificial neural network (ANN) based on particle swarm optimization (PSO) algorithm and differential evolution (DE) algorithm, were used for prioritizing climate and urban parameters. The analysis is based on the feature selection process and then the obtained results from the proposed models compared to select the best one. Finally, the difference in cost function was about 0.0001 between the performances of the two models, hence, the two methods were not different in cost function, however, ANN-PSO was found to be better, because it reached to the desired precision level in lesser iterations than ANN-DE. In addition, the priority of two variables, urban parameter, and relative humidity, were the highest to predict the confirmed cases of COVID-19.


Author(s):  
Ebony I Weems ◽  
Noé U de la Sancha ◽  
Laurel J Anderson ◽  
Carlos Zambrana-Torrelio ◽  
Ronaldo P Ferraris

Synopsis We argue that the current environmental changes stressing the Earth’s biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.


Author(s):  
Kevin Bouiller ◽  
Gaud Catho ◽  
Marion Le Maréchal ◽  
Julien Gras ◽  
Maxime Hentzien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document