Rapid determination of collagen in meat-based foods by microwave hydrolysis of proteins and HPAEC–PAD analysis of 4-hydroxyproline

Meat Science ◽  
2008 ◽  
Vol 80 (2) ◽  
pp. 401-409 ◽  
Author(s):  
M.C. Messia ◽  
T. Di Falco ◽  
G. Panfili ◽  
E. Marconi
1994 ◽  
Vol 77 (3) ◽  
pp. 760-764 ◽  
Author(s):  
Adrianus J Engelen ◽  
Fred C Van Der Heeft ◽  
Peter H G Randsdorp ◽  
Ed L C Smtt

Abstract A simple and rapid method is described for determining the enzymatic activity of microbial phytase. The method is based on the determination of inorganic orthophosphate released on hydrolysis of sodium phytate at pH 5.5.


1978 ◽  
Vol 24 (2) ◽  
pp. 208-211 ◽  
Author(s):  
P Chapdelaine ◽  
R R Tremblay ◽  
J Y Dubé

Abstract Hitherto, seminal plasma maltase has been measured with maltose as substrate; this method is time consuming and lacks specificity. The use of a synthetic substrate, p-nitrophenol-alpha-D-glucopyranoside, allows accurate and rapid determination of this activity. When maltase is added to the incubation medium (the substrate and reduced glutathione in potassium phosphate buffer, pH 6.8), maintained at 37 degrees C, hydrolysis of the original substrate to p-nitrophenol goes at a constant rate during 4 h. Under optimal conditions of incubation, the Michaelis constant of the reaction, calculated by the Hanes method, was 2.92 +/- 0.84 (SD) X 10(-3) for six different semen samples. Isomaltase appeared to be absent from seminal plasma. The enzyme is stable to freezing and slow thawing and can be stored for at least 26 days at -80 degrees C. Its molecular weight is 259 000. Tris(hydroxymethyl)aminomethane (pH 6.8) exerts a noncompetitive inhibition on the enzyme activity. In 68 men 23 to 45 years old, whose semen analyses were normal, the seminal plasma maltase activity was 467 +/- 135 (SD) mU/g of protein. It was generally decreased in patients with infertility disorders.


RSC Advances ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 7879-7885 ◽  
Author(s):  
Fariborz Atabaki ◽  
Ebrahim Abedini ◽  
Arash Shokrolahi

Sulfonated polynaphthalene (SPN) was successfully developed as solid acid catalysts for the hydrolysis of cellulose into high yields of glucose.


Author(s):  
T. Y. Tan ◽  
W. K. Tice

In studying ion implanted semiconductors and fast neutron irradiated metals, the need for characterizing small dislocation loops having diameters of a few hundred angstrom units usually arises. The weak beam imaging method is a powerful technique for analyzing these loops. Because of the large reduction in stacking fault (SF) fringe spacing at large sg, this method allows for a rapid determination of whether the loop is faulted, and, hence, whether it is a perfect or a Frank partial loop. This method was first used by Bicknell to image small faulted loops in boron implanted silicon. He explained the fringe spacing by kinematical theory, i.e., ≃l/(Sg) in the fault fringe in depth oscillation. The fault image contrast formation mechanism is, however, really more complicated.


2017 ◽  
Vol 45 (2) ◽  
pp. 455-464
Author(s):  
T.T. Xue ◽  
J. Liu ◽  
Y.B. Shen ◽  
G.Q. Liu

1962 ◽  
Vol 41 (2) ◽  
pp. 234-246 ◽  
Author(s):  
H. J. van der Molen

ABSTRACT A procedure for the quantitative determination of 5β-pregnan-3α-ol-20-one in urine is described. After acid hydrolysis of the pregnanolone-conjugates in urine, the free steroids are extracted with toluene. Pregnanolone is isolated in a pure form as its acetate; after chromatographic separation of the free steroids on alumina, the fraction containing pregnanolone is acetylated and rechromatographed on alumina. Quantitative determination of the isolated pregnanolone-acetate is carried out with the aid of the infrared spectrum recorded by a micro KBr-wafermethod. The reliability of the method under various conditions is discussed under the headings, specificity, accuracy, precision and sensitivity. It is possible to determine 30–40 μg pregnanolone in a 24-hours urine portion with a precision of 25%.


1963 ◽  
Vol 44 (1) ◽  
pp. 47-66 ◽  
Author(s):  
W. Nocke ◽  
H. Breuer

ABSTRACT A method for the chemical determination of 16-epi-oestriol in the urine of nonpregnant women with a qualitative sensitivity of less than 0.5 μg/24 h is described. The separation of 16-epi-oestriol and oestriol is accomplished by converting 16-epi-oestriol into its acetonide, a reaction which is stereoselective for cis-glycols and therefore not undergone by oestriol as a trans-glycol. Following partition between chloroform and aqueous alkali, the acetonide of 16-epi-oestriol is completely separated with the organic layer whereas oestriol as a strong phenol remains in the alkaline phase. 16-epi-oestriol is chromatographed on alumina as the acetonide and determined as a Kober chromogen. This procedure can easily be incorporated into the method of Brown et al. (1957 b) thus making possible the simultaneous routine assay of oestradiol-17β, oestrone, oestriol and 16-epi-oestriol from one sample of urine. The specificity of the method was established by separation of 16-epi-oestriol from nonpregnancy urine as the acetonide, hydrolysis of the acetonide by phosphoric acid, isolation of the free compound by microsublimation and identification by micro melting point, colour reactions and chromatography. The accuracy of the method is given by a mean recovery of 64% for pure crystalline 16-epi-oestriol when added to hydrolysed urine in 5–10 μg amounts. The precision is given by s = 0.24 μg/24 h. For the duplicate determination of 16-epi-oestriol the qualitative sensitivity is 0.44 μg/24 h, the maximum percentage error being ± 100% The quantitative sensitivity (±25% error) is 1.7 μg/24 h.


1961 ◽  
Vol 38 (4) ◽  
pp. 545-562 ◽  
Author(s):  
L. Kecskés ◽  
F. Mutschler ◽  
I. Glós ◽  
E. Thán ◽  
I. Farkas ◽  
...  

ABSTRACT 1. An indirect paperchromatographic method is described for separating urinary oestrogens; this consists of the following steps: acidic hydrolysis, extraction with ether, dissociation of phenol-fractions with partition between the solvents. Previous purification of phenol fraction with the aid of paperchromatography. The elution of oestrogen containing fractions is followed by acetylation. Oestrogen acetate is isolated by re-chromatography. The chromatogram was developed after hydrolysis of the oestrogens 'in situ' on the paper. The quantity of oestrogens was determined indirectly, by means of an iron-reaction, after the elution of the iron content of the oestrogen spot, which was developed by the Jellinek-reaction. 2. The method described above is satisfactory for determining urinary oestrogen, 17β-oestradiol and oestriol, but could include 16-epioestriol and other oestrogenic metabolites. 3. The sensitivity of the method is 1.3–1.6 μg/24 hours. 4. The quantitative and qualitative determination of urinary oestrogens with the above mentioned method was performed in 50 pregnant and 9 non pregnant women, and also in 2 patients with granulosa cell tumour.


Sign in / Sign up

Export Citation Format

Share Document