A CPRBM-based method for large-deflection analysis of contact-aided compliant mechanisms considering beam-to-beam contacts

2020 ◽  
Vol 145 ◽  
pp. 103700 ◽  
Author(s):  
Mohui Jin ◽  
Benliang Zhu ◽  
Jiasi Mo ◽  
Zhou Yang ◽  
Xianmin Zhang ◽  
...  
Author(s):  
A. Midha ◽  
I. Her ◽  
B. A. Salamon

Abstract A broader research proposal seeks to systematically combine large-deflection mechanics of flexible elements with important kinematic considerations, in yielding compliant mechanisms which perform useful tasks. Specifically, the proposed design methodology will address the following needs: development of the necessary nomenclature, classification and definitions, and identification of the kinematic properties; categorization of mechanism synthesis types, both structurally as well as by function; development of efficient computational techniques for design; consideration of materials; and application and validation. Contained herein, in particular, is an introduction to the state-of-the-art in compliant mechanisms, and the development of an accurate chain calculation algorithm for use in the analysis of a large-deflection, cantilevered elastica. Shooting methods, which permit specification of additional boundary conditions on the elastica, as well as compliant mechanism examples are presented in a companion paper.


Author(s):  
Charles Kim

Statically balanced compliant mechanisms require no holding force throughout their range of motion while maintaining the advantages of compliant mechanisms. In this paper, a post-buckled fixed-guided beam is proposed to provide the negative stiffness to balance the positive stiffness of a compliant mechanism. To that end, a unique curve decomposition modeling method is presented to simplify the large deflection analysis. The modeling method facilitates parametric design insight and elucidates key points on the force-deflection curve. Experimental results validate the analysis. Furthermore, static balancing with fixed-guided beams is demonstrated for a rectilinear proof-of-concept prototype.


2012 ◽  
Vol 4 (4) ◽  
Author(s):  
Charles Kim ◽  
Donna Ebenstein

Statically balanced compliant mechanisms require no holding force throughout their range of motion while maintaining the advantages of compliant mechanisms. In this paper, a postbuckled fixed-guided beam is proposed to provide the negative stiffness to balance the positive stiffness of a compliant mechanism. To that end, a curve decomposition modeling method is presented to simplify the large deflection analysis. The modeling method facilitates parametric design insight and elucidates key points on the force–deflection curve. Experimental results validate the analysis. Furthermore, static balancing with fixed-guided beams is demonstrated for a rectilinear proof-of-concept prototype.


1996 ◽  
Vol 18 (9) ◽  
pp. 659-668 ◽  
Author(s):  
Iraj H.P. Mamaghani ◽  
T. Usami ◽  
E. Mizuno

2021 ◽  
Vol 11 (5) ◽  
pp. 2379
Author(s):  
Jeong-Hyeon Kim ◽  
Doo-Hwan Park ◽  
Seul-Kee Kim ◽  
Myung-Sung Kim ◽  
Jae-Myung Lee

The curved plate has been extensively used as a structural member in many industrial fields, especially the shipbuilding industry. The present study investigated the ultimate strength and collapse behavior of the simply supported curved plate under a longitudinal compressive load. To do this, experimental apparatuses for evaluating the buckling collapse test of the curved plates was developed. Then, a series of buckling collapse experiments was carried out by considering the flank angle, slenderness ratio, and aspect ratio of plates. To examine the fundamental buckling and collapse behavior of the curved plate, elastoplastic large deflection analysis was performed using the commercial finite element analysis program. On the basis of both the experimental and FE analysis, the effects of the flank angle, slenderness ratio, and aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. Finally, the empirical design formula for predicting the ultimate strength of curved plates was derived. The proposed empirical formula is a good indicator for estimating the behavior of the curved plate.


Sign in / Sign up

Export Citation Format

Share Document