Investigation on clearance-induced vibro-impacts of torsional system based on Hertz contact nonlinearity

2021 ◽  
Vol 162 ◽  
pp. 104342
Author(s):  
Yuanfeng Xia ◽  
Jian Pang ◽  
Liang Yang ◽  
Zhigang Chu
2020 ◽  
Vol 13 (4) ◽  
pp. 352-365
Author(s):  
Guangxin Wang ◽  
Lili Zhu ◽  
Peng Wang ◽  
Jia Deng

Background: Nutation drive is being extensively investigated due to its ability to achieve a high reduction ratio with a compact structure and the potential for low vibration, high efficiency and design flexibility. However, many problems including the difficulty to process the inner bevel gear, less number of teeth in engagement and not being suitable for high-power transmission have restricted its development. Objective: The purpose of this paper is to analyze the contact strength of a patent about a new nutation drive developed based on meshing between two face gears, which has the advantages of both face gear and nutation drive, including large transmission ratio, large coincidence, small size, compact structure and strong bearing capacity. Methods: Based on the meshing principle and basic structure of the nutation face gear drive, the contact strength of nutation face gear transmission is analyzed by the Hertz contact analysis method and FEM method. Results: The maximum stress values of nutation face gear teeth are compared by two methods, which verify the accuracy of Hertz contact analytical method in calculating the contact strength of nutation face gear teeth. Furthermore, nine groups of three-dimensional models for the nutation face gear drive with a transmission ratio of 52 and different cutter parameters are established. Conclusion: The study analyzes the contact stress of fixed and rotary face gears in meshing with planetary face gears, and obtains the distribution law of contact stress and the influence of the number of teeth and parameters of the cutter on the load-carrying capacity.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 787-796 ◽  
Author(s):  
Feng Qi ◽  
Tianshu Wang ◽  
Junfeng Li

SUMMARYThis paper presents a new planar passive dynamic model with contact between the feet and the ground. The Hertz contact law and the approximate Coulomb friction law were introduced into this human-like model. In contrast to McGeer's passive dynamic models, contact stiffness, contact damping, and coefficients of friction were added to characterize the walking model. Through numerical simulation, stable period-one gait and period-two gait cycles were found, and the contact forces were derived from the results. After investigating the effects of the contact parameters on walking gaits, we found that changes in contact stiffness led to changes in the global characteristics of the walking gait, but not in contact damping. The coefficients of friction related to whether the model could walk or not. For the simulation of the routes to chaos, we found that a small contact stiffness value will lead to a delayed point of bifurcation, meaning that a less rigid surface is easier for a passive model to walk on. The effects of contact damping and friction coefficients on routes to chaos were quite small.


2013 ◽  
Vol 700 ◽  
pp. 164-169
Author(s):  
Kai Song ◽  
Chao Wang ◽  
Tao Chen ◽  
Ze Zhou

This paper aims at cover body dent resistance optimization problems, developed a whole process method using the finite element simulation method and the corresponding engineering experience to solve the dent resistance problem. Use of Tcl/Tk language to develop the script for fast simulation model consider material nonlinearity and contact nonlinearity, Use Abaqus software to calculate the results, and then customized to optimize use of simplified script parameters on changes in the working conditions of the structure will be optimized. The results show that this set of process optimization method to solve the variable conditions dent resistance is quickly, efficiently and accurately.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878393 ◽  
Author(s):  
Lu Yan

Based on Hertz contact theory and one-dimensional Winkler foundation combination with viscoelastic theory, the author derived theoretical formulas of indentation rolling resistance, respectively. Using the laboratorial apparatus of indentation rolling resistance, the author mainly concentrates on the error analysis about two kinds of theoretical formula which bear on indentation rolling resistance compared with experimental result. The reason why author employs Hertz contact theory to discuss indentation rolling resistance is that indentation rolling resistance is a sort of contact resistance. As a result, Hertz contact theory is generally applicable to study it. On the other hand, because conveyor belt has viscoelastic property, it is appropriate to use viscoelastic theory by the aid of three-parameter Maxwell viscoelastic model combination with one-dimensional Winkler foundation. Ultimately, this article infers that theoretical formula based on the Hertz contact is brief and clear compared with one-dimensional Winkler foundation in principle. However, it is noticeable that when the belt is at high speed, the reliability of formula based on Hertz theory has decreased obviously. This conclusion can give a beneficial reference for the energy saving of belt conveyor.


Author(s):  
S. Tripathy ◽  
E. J. Berger

Costal cartilage is one of the load bearing tissues of the rib cage. Literature on the material characterization of the costal cartilage is limited. Atomic force microscopy has been extremely successful in characterizing the elastic properties of articular cartilage, but no studies have been published on costal cartilage. In this study AFM indentations on human costal cartilage were performed and compared with macro scale indentation data. Spherical beaded tips of three sizes were used for the AFM indentations. The Hertz contact model for spherical indenter was used to analyze the data and obtain the Young’s modulus. The costal cartilage was found to be almost linearly elastic till 600 nm of indentation depth. It was also found that the modulus values decreased with the distance from the junction. The modulus values from macro indentations were found to be 2-fold larger than the AFM indentation modulus.


2013 ◽  
Vol 457-458 ◽  
pp. 257-261
Author(s):  
Li Gang Cai ◽  
Teng Yun Xu ◽  
Yong Sheng Zhao

A virtual material model of joint interfaces was established based on the Hertz contact theory and fractal theory, this model was improved by considering the influence of the elastic-plastic deformation of asperities and ameliorating the calculation methods of the elastic modulus. The simulation results of elastic-plastic considered and elastic-plastic unconsidered were compared, moreover, the finite element simulation results and experimental results were compared to fully explain the necessity of considering the influence of the elastic-plastic deformation and the the correctness of the method to calculate the elastic modulus. The research suggested that under a same load the elastic modulus of the model considering the influence of the elastic-plastic deformation was slightly larger than the un considering one, which means it could describe the characteristics of joint interfaces more accurately.


2020 ◽  
Vol 90 (10) ◽  
pp. 1672
Author(s):  
В.В. Нарожнов

The results of a study of a nonlinear mechanical oscillator with elastic impacts are presented. The experiment was carried out using an electromechanical impact oscillator. The theoretical model is based on the equations of motion, taking into account the elastic force, which is calculated under the Hertz contact theory. It is shown that bifurcations and attractors of the “stable focus” and “limit cycle” types can occur for the impact oscillator. Fourier filtering was used to analyze the spectral characteristics of the signals.


Sign in / Sign up

Export Citation Format

Share Document