scholarly journals Strain hardening behaviors and strain rate sensitivity of gradient-grained Fe under compression over a wide range of strain rates

2016 ◽  
Vol 95 ◽  
pp. 71-82 ◽  
Author(s):  
Fuping Yuan ◽  
Ping Chen ◽  
Yanpeng Feng ◽  
Ping Jiang ◽  
Xiaolei Wu
1980 ◽  
Vol 15 (4) ◽  
pp. 201-207 ◽  
Author(s):  
M S J Hashmi

Experimental results on a mild steel are reported from ballistics tests which gave rise to strain rates of up to 105 s−1. A finite-difference numerical technique which incorporates material inertia, elastic-strain hardening and strain-rate sensitivity is used to establish the strain-rate sensitivity constants p and D in the equation, σ4 = σ1 (1+(∊/D)1/ p). The rate sensitivity established in this study is compared with those reported by other researchers.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ramzi Othman

In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5to 5 × 104 s−1). This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.


1986 ◽  
Vol 108 (4) ◽  
pp. 344-353 ◽  
Author(s):  
M. G. Stout ◽  
P. S. Follansbee

Sheet and rod stock of 304L stainless steel were tested in uniaxial tension and compression at strain rates between 10−4 s−1 and 104 s−1. To evaluate the yield locus behavior of the sheet material, multiaxial experiments were performed at a strain rate of 10−3 s−1. We have analyzed these results in terms of existing strain-rate sensitivity, work hardening, and yield locus models. Strain-rate sensitivity was found to follow a thermal activation law over the entire range of strain rates used in this investigation. The best description of strain hardening did depend on the strain range to which the data were fit. The Voce law was the most accurate at large strains (ε > 0.40), whereas at small strains, in the vicinity of yield, the laws of either Swift or Ludwik were the most accurate. A simple power law description of work hardening was inadequate over all levels of strain. We examined a number of yield criteria, both isotropic and anisotropic, with respect to the biaxial yield behavior. Bassani’s yield criterion gave the best fit to our experimental results. However, the simple von Mises yield function also gave an acceptable prediction of yield strength and direction of current plastic strain rate. The yield criteria of Hill, both the quadratic and nonquadratic versions, did not match the experimental data. We feel that these results have direct application to the selection of the proper constitutive laws for the finite element modeling of the deformation of 304L stainless steel.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2015 ◽  
Vol 719-720 ◽  
pp. 87-90
Author(s):  
Muneer Baig ◽  
Hany Rizk Ammar ◽  
Asiful Hossain Seikh ◽  
Mohammad Asif Alam ◽  
Jabair Ali Mohammed

In this investigation, bulk ultra-fine grained and nanocrystalline Al-2 wt.% Fe alloy was produced by mechanical alloying (MA). The powder was mechanically milled in an attritor for 3 hours and yielded an average crystal size of ~63 nm. The consolidation and sintering was performed using a high frequency induction sintering (HFIS) machine at a constant pressure of 50 MPa. The prepared bulk samples were subjected to uniaxial compressive loading over wide range of strain rates for large deformation. To evaluate the effect of sintering conditions and testing temperature on the strain rate sensitivity, strain rate jump experiments were performed at high temperature. The strain rate sensitivity of the processed alloy increased with an increase in temperature. The density of the bulk samples were found to be between 95 to 97%. The average Vickers micro hardness was found to be 132 Hv0.1.


2011 ◽  
Vol 82 ◽  
pp. 124-129 ◽  
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni ◽  
Stefano Bianchi

In this paper the first results of the mechanical characterization in tension of two high strength alloys in a wide range of strain rates are presented. Different experimental techniques were used for different strain rates: a universal machine, a Hydro-Pneumatic Machine and a JRC-Split Hopkinson Tensile Bar. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. An increase of the stress at a given strain increasing the strain-rate from 10-3 to 103 s-1, a moderate strain-rate sensitivity of the uniform and fracture strain, a poor reduction of the cross-sectional area at fracture with increasing the strain-rate were shown. Based on these experimental results the parameters required by the Johnson-Cook constitutive law were determined.


1968 ◽  
Vol 35 (2) ◽  
pp. 349-356 ◽  
Author(s):  
Norman Jones

A relatively simple analytical treatment of the behavior of a rigid-plastic annular plate subjected to an initial linear impulsive velocity profile is presented. The influence of finite deflections has been included in addition to strain-hardening and strain-rate sensitivity of the plate material. It is shown, for deflections up to the order of twice the plate thickness, that strain-hardening is unimportant, strain-rate sensitivity has somewhat more effect, while membrane forces play a dominant role in reducing the permanent deflections.


Sign in / Sign up

Export Citation Format

Share Document