Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel

1986 ◽  
Vol 108 (4) ◽  
pp. 344-353 ◽  
Author(s):  
M. G. Stout ◽  
P. S. Follansbee

Sheet and rod stock of 304L stainless steel were tested in uniaxial tension and compression at strain rates between 10−4 s−1 and 104 s−1. To evaluate the yield locus behavior of the sheet material, multiaxial experiments were performed at a strain rate of 10−3 s−1. We have analyzed these results in terms of existing strain-rate sensitivity, work hardening, and yield locus models. Strain-rate sensitivity was found to follow a thermal activation law over the entire range of strain rates used in this investigation. The best description of strain hardening did depend on the strain range to which the data were fit. The Voce law was the most accurate at large strains (ε > 0.40), whereas at small strains, in the vicinity of yield, the laws of either Swift or Ludwik were the most accurate. A simple power law description of work hardening was inadequate over all levels of strain. We examined a number of yield criteria, both isotropic and anisotropic, with respect to the biaxial yield behavior. Bassani’s yield criterion gave the best fit to our experimental results. However, the simple von Mises yield function also gave an acceptable prediction of yield strength and direction of current plastic strain rate. The yield criteria of Hill, both the quadratic and nonquadratic versions, did not match the experimental data. We feel that these results have direct application to the selection of the proper constitutive laws for the finite element modeling of the deformation of 304L stainless steel.

2019 ◽  
Vol 298 ◽  
pp. 43-51
Author(s):  
Jia Yong Si ◽  
Song Hao Liu ◽  
Long Chen

This research investigated the effect of hot extrusion on the flow behaviour of nickel-based superalloy FGH4096 by hot compression experiments in the temperature range from 1020 to 1110 °C and strain rates ranging from 0.1 to 0.001 s-1. The influence of the hot extrusion on the initial microstructures, work hardening rate, strain rate sensitivity, and activation energy of deformation were discussed. The results show that the extruded microstructure is constituted by the fine dynamic recrystallisation of grains. The true strain-true stress curves show that the as-HIPed and as-HEXed FGH4096 superalloy present double flow stress peaks and discontinuous flow softening. The as-HEXed FGH4096 is easily dynamically softened at high temperatures and high strain rates compared with as-HIPed microstructures. As for the work hardening rate, the as-HEXed FGH4096 exhibits higher θ values than that of as-HIPed. It is beneficial to the homogenous deformation and grain refinement during subsequent turbine disk forging. Comparing to as-HIPed FGH4096, the highest strain rate sensitivity value of as-HEXed is 0.306 at 1110 °C. The isothermal superplastic forging of a P/M turbine disk may be carried out at this temperature. The deformation activation energy value of the as-HIPed FGH4096 is lower which means that dislocation sliding and climbing can be easily initiated in the as-HIPed alloy.


1980 ◽  
Vol 15 (4) ◽  
pp. 201-207 ◽  
Author(s):  
M S J Hashmi

Experimental results on a mild steel are reported from ballistics tests which gave rise to strain rates of up to 105 s−1. A finite-difference numerical technique which incorporates material inertia, elastic-strain hardening and strain-rate sensitivity is used to establish the strain-rate sensitivity constants p and D in the equation, σ4 = σ1 (1+(∊/D)1/ p). The rate sensitivity established in this study is compared with those reported by other researchers.


2013 ◽  
Vol 589-590 ◽  
pp. 45-51 ◽  
Author(s):  
Li Na Zhang ◽  
Peng Nan Li ◽  
Si Wen Tang ◽  
Wen Bo Tang ◽  
Shuai Zhang

The stress-strain curves, mechanical behaviors, and Johnson-Cook model of 4Cr13 stainless steel were investigated at both the strain rates from 0.001s-1 to 7000s-1 and the temperatures from 293K to 673K based on the electronic universal testing machine and the split Hopkinson bar. The results showed that 4Cr13 stainless steel was very sensitive to the temperature and the strain rate. The temperature sensitivity factor decreased with increasing the temperature, and the strain rate sensitivity factor increased with increasing the strain rate. Both the temperature sensitivity factor and strain rate sensitivity factor decreased with increasing strain. The flow stress increased with strain rate and strain, but decreased with temperature. The J-C model prediction had a good agreement with the experimental stress-strain in the wide range of temperatures and strain rates. The Johnson-Cook model gave the foundation for finite element analysis during the cutting process.


2010 ◽  
Vol 25 (4) ◽  
pp. 754-763 ◽  
Author(s):  
Woei-Shyan Lee ◽  
Chi-Feng Lin ◽  
Tao-Hsing Chen ◽  
Meng-Chieh Yang

The effects of prestrain, strain rate, and temperature on the impact properties of 304L stainless steel are investigated using a compressive split-Hopkinson pressure bar. The impact tests are performed at strain rates ranging from 2000 to 6000 s−1 and temperatures of 300, 500, and 800 °C using 304L specimens with prestrains of 0.15 or 0.5. The results show that the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate or decreasing temperature. As the prestrain increases, the flow stress and strain rate sensitivity increase, but the work-hardening rate decreases. The temperature sensitivity increases with an increasing strain rate, temperature, and prestrain. Overall, the effects of prestrain on the impact properties of the tested specimens dominate those of the strain rate or temperature, respectively. Finally, optical microscopy observations reveal that the specimens fracture primarily as the result of the formation of adiabatic shear bands.


1993 ◽  
Vol 21 (4) ◽  
pp. 207-217 ◽  
Author(s):  
N. Mingolo ◽  
A. Pochettino ◽  
C. Vial-Edwards

The evolution of texture and yield locus of AISI 409 ferritic stainless steel under different deformation paths was analyzed.Texture evolution with plastic deformation was predicted by two models: Taylor (TPG), assuming pencil glide in {hkl}〈111〉 slip systems and Viscoplastic under the relaxed constraint assumption (VRC), considering the following slip systems: {110}〈111〉, {112}〈111〉, and {123}〈111〉, selected according to a strain rate sensitivity law. TPG model tends to predict some stronger developments of texture than the VRC model.Predictions of stress–strain curves along different loading paths with TPG and VRC models were very close to experimental results. Texture evolution did not have a significant effect to modify the rate and the isotropy of the strain hardening process of AISI 409 ferritic stainless steel.


Sign in / Sign up

Export Citation Format

Share Document