Payne effect: A Constitutive model based on a dynamic strain amplitude dependent spectrum of relaxation time

2020 ◽  
Vol 148 ◽  
pp. 103526
Author(s):  
D. Jalocha
1963 ◽  
Vol 36 (2) ◽  
pp. 407-421 ◽  
Author(s):  
Glenn E. Warnaka

Abstract Many common elastomeric materials have two ranges of dynamic-mechanical behavior. Such materials behave as viscoelastomers at very small strains and as plastoelastomers at strains of practical engineering interest. The change from viscoelastic to plastoelastic behavior occurs at dynamic strain amplitudes of 0.001 inches per inch to 0.005 inches per inch. In the plastoelastic range, the dynamic elastic modulus decreases with increasing dynamic strain amplitude. Loss factor reaches a maximum in the plastoelastic range.


Author(s):  
Safia BOUZIDI ◽  
Hocine BECHIR

Abstract The present work concerns the modeling of the Payne effect in nonlinear viscoelasticity. This effect is a characteristic property of filled elastomers. Indeed, under cyclic loading of increasing amplitude, a decrease is shown in the storage modulus and a peak in the loss modulus. In this study, the Payne effect is assumed to arise from a change of the material microstructure, i.e., the thixotropy. The so-called intrinsic time or shift time was inferred from solving a differential equation that represents the evolution of a material's microstructure. Then, the physical time is replaced by the shift time in the framework of a recent fractional visco-hyperelastic model, which was linearized in the neighborhood of a static pre-deformation. As a result, we have investigated the effects of static pre-deformation, frequency, and magnitude of dynamic strain on storage and loss moduli in the steady state. Thereafter, the same set of parameters identified from the complex Young's modulus was used to predict the stress in the pre-deformed configuration. Finally, it is demonstrated that the proposed model is reasonably accurate in predicting Payne effect.


Sign in / Sign up

Export Citation Format

Share Document