Progressive disc degeneration at C5–C6 segment affects the mechanics between disc heights and posterior facets above and below the degenerated segment: A flexion–extension investigation using a poroelastic C3–T1 finite element model

2012 ◽  
Vol 34 (5) ◽  
pp. 552-558 ◽  
Author(s):  
Mozammil Hussain ◽  
Raghu N. Natarajan ◽  
Howard S. An ◽  
Gunnar B.J. Andersson
Author(s):  
Lissette M. Ruberté ◽  
Raghu Natarajan ◽  
Gunnar B. J. Andersson

Degenerative disc disease (DDD) is a progressive pathological condition observed in 60 to 80% of the population [1]. It involves changes in both the biochemistry and morphology of the intervertebral disc and is associated with chronic low back pain, sciatica and adult scoliosis [2,3]. The most accepted theory of the effects of DDD on the kinematics of the spine is that proposed by Kirkaldy-Willis and Farfan which states that the condition initiates as a temporary dysfunction, followed by instability and then re-stabilization as the disease progresses [4]. Although there is no clear relationship between disc degeneration and the mechanical behavior of the lumbar spine, abnormal motion patterns either in the form of increased motion or erratic motion have been reported from studies on human cadaveric motion segments [5,6]. To date however no study has looked at how disc degeneration affects the adjacent segment mechanics. IN vivo testing is difficult for these purposes given that specimens are generally obtained from people at the later stages of life and consequently often display multiple pathologies. A finite element model is a viable alternative to study the mechanics of the segments adjacent to the diseased disc. It is hypothesized that moderate degeneration at one level will alter the kinematics of the whole lumbar spine.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2000 ◽  
Author(s):  
Tammy Haut Donahue ◽  
Maury L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

Abstract A finite element model of the tibio-femoral joint in the human knee was created using a new technique for developing accurate solid models of soft tissues (i.e. cartilage and menisci). The model was used to demonstrate that constraining rotational degrees of freedom other than flexion/extension when the joint is loaded in compression markedly affects the load distribution between the medial and lateral sides of the joint. The model also was used to validate the assumption that the bones can be treated as rigid.


Author(s):  
M Barink ◽  
A van Kampen ◽  
M de Waal Malefijt ◽  
N Verdonschot

For testing purposes of prostheses at a preclinical stage, it is very valuable to have a generic modelling tool, which can be used to optimize implant features and to avoid poor designs being launched on to the market. The modelling tool should be fast, efficient, and multipurpose in nature; a finite element model is well suited to the purpose. The question posed in this study was whether it was possible to develop a mathematically fast and stable dynamic finite element model of a knee joint after total knee arthroplasty that would predict data comparable with published data in terms of (a) laxities and ligament behaviour, and (b) joint kinematics. The soft tissue structures were modelled using a relatively simple, but very stable, composite model consisting of a band reinforced with fibres. Ligament recruitment and balancing was tested with laxity simulations. The tibial and patellar kinematics were simulated during flexion-extension. An implicit mathematical formulation was used. Joint kinematics, joint laxities, and ligament recruitment patterns were predicted realistically. The kinematics were very reproducible and stable during consecutive flexion-extension cycles. Hence, the model is suitable for the evaluation of prosthesis design, prosthesis alignment, ligament behaviour, and surgical parameters with respect to the biomechanical behaviour of the knee.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Jason P. Halloran ◽  
Chadd W. Clary ◽  
Lorin P. Maletsky ◽  
Mark Taylor ◽  
Anthony J. Petrella ◽  
...  

Evaluating total knee replacement kinematics and contact pressure distributions is an important element of preclinical assessment of implant designs. Although physical testing is essential in the evaluation process, validated computational models can augment these experiments and efficiently evaluate perturbations of the design or surgical variables. The objective of the present study was to perform an initial kinematic verification of a dynamic finite element model of the Kansas knee simulator by comparing predicted tibio- and patellofemoral kinematics with experimental measurements during force-controlled gait simulation. A current semiconstrained, cruciate-retaining, fixed-bearing implant mounted in aluminum fixtures was utilized. An explicit finite element model of the simulator was developed from measured physical properties of the machine, and loading conditions were created from the measured experimental feedback data. The explicit finite element model allows both rigid body and fully deformable solutions to be chosen based on the application of interest. Six degrees-of-freedom kinematics were compared for both tibio- and patellofemoral joints during gait loading, with an average root mean square (rms) translational error of 1.1 mm and rotational rms error of 1.3 deg. Model sensitivity to interface friction and damping present in the experimental joints was also evaluated and served as a secondary goal of this paper. Modifying the metal-polyethylene coefficient of friction from 0.1 to 0.01 varied the patellar flexion-extension and tibiofemoral anterior-posterior predictions by 7 deg and 2 mm, respectively, while other kinematic outputs were largely insensitive.


2016 ◽  
Vol 17 (4) ◽  
pp. 497-503 ◽  
Author(s):  
Rinchen Phuntsok ◽  
Marcus D. Mazur ◽  
Benjamin J. Ellis ◽  
Vijay M. Ravindra ◽  
Douglas L. Brockmeyer

OBJECT There is a significant deficiency in understanding the biomechanics of the pediatric craniocervical junction (CCJ) (occiput–C2), primarily because of a lack of human pediatric cadaveric tissue and the relatively small number of treated patients. To overcome this deficiency, a finite element model (FEM) of the pediatric CCJ was created using pediatric geometry and parameterized adult material properties. The model was evaluated under the physiological range of motion (ROM) for flexion-extension, axial rotation, and lateral bending and under tensile loading. METHODS This research utilizes the FEM method, which is a numerical solution technique for discretizing and analyzing systems. The FEM method has been widely used in the field of biomechanics. A CT scan of a 13-month-old female patient was used to create the 3D geometry and surfaces of the FEM model, and an open-source FEM software suite was used to apply the material properties and boundary and loading conditions and analyze the model. The published adult ligament properties were reduced to 50%, 25%, and 10% of the original stiffness in various iterations of the model, and the resulting ROMs for flexion-extension, axial rotation, and lateral bending were compared. The flexion-extension ROMs and tensile stiffness that were predicted by the model were evaluated using previously published experimental measurements from pediatric cadaveric tissues. RESULTS The model predicted a ROM within 1 standard deviation of the published pediatric ROM data for flexion-extension at 10% of adult ligament stiffness. The model's response in terms of axial tension also coincided well with published experimental tension characterization data. The model behaved relatively stiffer in extension than in flexion. The axial rotation and lateral bending results showed symmetric ROM, but there are currently no published pediatric experimental data available for comparison. The model predicts a relatively stiffer ROM in both axial rotation and lateral bending in comparison with flexion-extension. As expected, the flexion-extension, axial rotation, and lateral bending ROMs increased with the decrease in ligament stiffness. CONCLUSIONS An FEM of the pediatric CCJ was created that accurately predicts flexion-extension ROM and axial force displacement of occiput–C2 when the ligament material properties are reduced to 10% of the published adult ligament properties. This model gives a reasonable prediction of pediatric cervical spine ligament stiffness, the relationship between flexion-extension ROM, and ligament stiffness at the CCJ. The creation of this model using open-source software means that other researchers will be able to use the model as a starting point for research.


Human spine is one of the complex structure of the human body. It provides the link between upper and lower extremities of the human body. It is estimated that at least 30% of people in the middle age group from thirty to fifty years have some degree of disc degeneration. Disc degeneration disease can affect the quality of life and in certain individual it can cause severe chronic pain if left untreated. The low back pain associated with lumbar disc degeneration is usually generated from two causes which are abnormal motion instability and inflammation. Abnormal motion instability occurs when the annulus fibrosus are worn down and cannot absorb stress on the human spine effectively resulting in changes in movements along the vertebral segment. To understand lumbar disc problem, a thorough knowledge of the biomechanics of the normal human lumbar spine and a disc degenerated lumbar spine is of great importance. In this study, Computed tomography image of a 33 year old male is used. A three dimensional (3D) human lumbar spine (L3 to L5) is created and validated with literature. The finite element model was modified to degenerated disc and studied the biomechanics of the lumbar spine. Comparison of the biomechanics of normal human lumbar spine is done with the human lumbar spine with disc degeneration for different range of motion and different loads. The result shows that the pressure generated on degenerated disc is greater than normal disc. This work can be implemented and used for designing implants and also for intervertebral disc related analysis


Author(s):  
Mozammil Hussain ◽  
Ralph E. Gay ◽  
Kai-Nan An ◽  
Rodger Tepe

Many neck pain complaints are associated with degenerated discs in cervical spine. Disc degeneration (DD) consists of cascading stages of events with complex changes in disc tissue properties. This results in deterioration of the ability of the disc to perform its function normally. Several biomechanical and biochemical changes occur in the disc with degeneration. Increase in motion segment stiffness and peak stresses in the posterior annulus are some of the gross changes that occur in the disc with degeneration.


Author(s):  
Yongren Wu ◽  
John Glaser ◽  
Hai Yao

The intervertebral disc (IVD) is the largest cartilaginous structure in human body that contributes to flexibility and load support in the spine. To accomplish these functions, the disc has a unique architecture consisting of a centrally-located nucleus pulposus (NP) surrounded superiorly and inferiorly by cartilage endplates (CEP) and peripherally by the annulus fibrosus (AF). Disc degeneration is strongly linked to low back pain. Poor nutrient supply has been suggested as a potential mechanism for disc degeneration. Previous theoretical studies have shown that the distributions of nutrients and metabolites (e.g., oxygen, glucose, and lactate) within the IVD depended on tissue diffusivities, nutrient supply, and cellular metabolic rates [1, 2]. Based on a multiphasic mechano-electrochemical finite element model of human IVD [3], our recent theoretical study suggested that the mechanical loading has little effect on small solute transport (e.g., glucose), but significantly affects large solute transport (e.g., growth factor). The objective of this study was to further develop the multiphasic finite element model of IVD by including the cartilage endplate and considering the nutrient consumption of disc cells. Using this model, the effects of endplate and mechanical loading on solute transport in IVD were examined.


Sign in / Sign up

Export Citation Format

Share Document