The thermal profile of self-tapping screws: The effect of insertion speed, power insertion, and screw geometry on heat production at the bone-screw interface.

2022 ◽  
pp. 103754
Author(s):  
Daniel J Wills ◽  
Anshula Prasad ◽  
Brian B Gilmer ◽  
William R. Walsh
1998 ◽  
Vol 11 (04) ◽  
pp. 200-204 ◽  
Author(s):  
K. Kelly ◽  
G. S. Martin ◽  
D. J. Burba ◽  
S. A. Sedrish ◽  
R. M. Moore

SummaryThe purpose of the study was to determine and to compare the in vitro pullout strength of 5.5 mm cortical versus 6.5 mm cancellous bone screws inserted in the diaphysis and metaphysis of foal third metacarpal (MCIII) bones in threaded 4.5 mm cortical bone screw insertion holes that were then overdrilled with a 4.5 mm drill bit. This information is relevant to the selection of a replacement screw if a 4.5 mm cortical screw is stripped during orthopaedic surgery. In vitro pullout tests were performed in two independent cadaver studies, each consisting of 12 foal MCIII bones. Two 4.5 mm cortical screws were placed either in the mid-diaphysis (study 1) or distal metaphysis (study 2) of MCIII bones. The holes were then overdrilled with a 4.5 mm bit and had either a 5.5 mm cortical or a 6.5 mm cancellous screw inserted; screw pullout tests were performed at a rate of 0.04 mm/s until screw or bone failure occurred.The bone failed in all of the tests in the diaphyseal and metaphyseal bone. The holding power for 6.5 mm cancellous screws was significantly (p <0.05) greater than for 5.5 mm cortical screws in both the diaphysis and metaphysis. There was not any difference in the holding power of screws in either the diaphysis or the metaphysis between proximal and distal screw holes.If a 4.5 mm cortical bone screw strips in MCIII diaphyseal or metaphyseal bone of foals, a 6.5 mm cancellous screw would provide greater holding power than a 5.5 mm cortical screw.In order to provide information regarding selection of a replacement screw if a 4.5 mm cortical screw is stripped, the in vitro pullout strength was determined for 5.5 mm cortical and 6.5 mm cancellous screws inserted in third metacarpal diaphyseal and metaphyseal bone of foals in which threaded 4.5 mm cortical bone screw insertion holes had been overdrilled with a 4.5 mm bit. The holding power of the 6.5 mm cancellous screw was significantly greater than the 5.5 mm cortical screw in both the diaphysis and metaphysis of foal third metacarpal bone. Thus, it appears that if a 4.5 mm cortical screw is stripped during orthopaedic surgery in foals, a 6.5 mm cancellous screw would provide superior holding power.


1991 ◽  
Vol 4 (02) ◽  
pp. 38-45 ◽  
Author(s):  
F. Baumgart

SummaryThe so-called “mixing” of implants and instruments from different producers entertain certain risks.The use of standardized implant materials (e.g. stainless steel ISO 5832/1) from different producers is necessary but is not sufficient to justify the use of an osteosynthesis plate from one source and a bone screw from another.The design, dimensions, tolerances, manufacturing procedure, quality controls, and application technique of the instruments and implants also vary according to make. This can lead to damage, failure or fracture of the biomechanical system called “osteosynthesis” and hence the failure of the treatment undertaken. In the end, it is the patient who pays for these problems.Some examples also illustrate the potential problems for the staff and institutions involved.The use of a unique, consistent, well-tested, and approved set of implants and instruments is to be strongly recommended to avoid any additional risk.


2018 ◽  
Vol 52 (5) ◽  
pp. 401-413 ◽  
Author(s):  
Chuanqing Zhu ◽  
Ming Xu ◽  
Nansheng Qiu ◽  
Shengbiao Hu

Author(s):  
A. Arif Yezdani ◽  
Priya Chatterjee ◽  
S. Kishore Kumar ◽  
Kesavaram Padmavathy

1935 ◽  
Vol 69 (724) ◽  
pp. 461-466 ◽  
Author(s):  
C. T. Hurst ◽  
C. R. Walker
Keyword(s):  

2019 ◽  
Vol 97 (7) ◽  
pp. 3056-3070 ◽  
Author(s):  
Emily A Petzel ◽  
Evan C Titgemeyer ◽  
Alexander J Smart ◽  
Kristin E Hales ◽  
Andrew P Foote ◽  
...  

AbstractTwo experiments were conducted to measure rates of ruminal disappearance, and energy and nutrient availability and N balance among cows fed corn husks, leaves, or stalks. Ruminal disappearance was estimated after incubation of polyester bags containing husks, leaves or stalks in 2 separate ruminally cannulated cows in a completely randomized design. Organic matter (OM) that initially disappeared was greatest for stalks and least for husks and leaves (P < 0.01), but amounts of NDF that initially disappeared was greatest for husks, intermediate for stalks, and least for leaves (P < 0.01). Amounts of DM and OM that slowly disappeared were greatest in husks, intermediate in leaves, and least in stalks (P < 0.01). However, amounts of NDF that slowly disappeared were greatest in leaves, intermediate in husks, and least in stalks (P < 0.01). Rate of DM and OM disappearance was greater for leaves, intermediate for husks and least for stalks, but rate of NDF disappearance was greatest for stalks, intermediate for leaves, and least for husks (P < 0.01). Energy and nutrient availability in husks, leaves, or stalks were measured by feeding ruminally cannulated cows husk-, leaf-, or stalk-based diets in a replicated Latin square. Digestible energy lost as methane was less (P = 0.02) when cows were fed leaves in comparison to husks or stalks, and metabolizable energy (Mcal/kg DM) was greater (P = 0.03) when cows were fed husks and leaves compared with stalks. Heat production (Mcal/d) was not different (P = 0.74) between husks, leaves, or stalks; however, amounts of heat produced as a proportion of digestible energy intake were less (P = 0.05) among cows fed leaves in comparison to stalks or husks. Subsequently, there was a tendency (P = 0.06) for net energy available for maintenance from leaves (1.42 Mcal/kg DM) to be greater than stalks (0.91 Mcal/kg DM), and husks (1.30 Mcal/kg DM) were intermediate. Nitrogen balance was greater when cows were fed leaves, intermediate for husks, and least for stalks (P = 0.01). Total tract digestion of NDF was greater (P < 0.01) for husks and leaves compared with stalks. Husks had greater (P = 0.04) OM digestibility in comparison to stalks, and leaves were intermediate. Apparently, greater production of methane from husks in comparison to leaves limited amounts of energy available for maintenance from husks even though total-tract nutrient digestion was greatest when cows were fed husks or leaves.


Sign in / Sign up

Export Citation Format

Share Document