Modeling Droplet Dynamic and Thermal Profile of Spray Congealing Technology

Author(s):  
Márcio Temtem
Keyword(s):  
1981 ◽  
Vol 21 (1) ◽  
pp. 53-55 ◽  
Author(s):  
A. Madeira-Lopes ◽  
N. van Uden
Keyword(s):  

2002 ◽  
Vol 389-393 ◽  
pp. 1523-1526
Author(s):  
Jeong Park ◽  
Chin C. Lee ◽  
Jong Wook Kim ◽  
Jae Seung Lee ◽  
Won Sang Lee ◽  
...  

Pramana ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 151-159 ◽  
Author(s):  
S K Khanna ◽  
M Sekar ◽  
A Michael David ◽  
K Govinda Rajan ◽  
P Bhaskar Rao

Energy ◽  
2021 ◽  
Vol 220 ◽  
pp. 119725
Author(s):  
Lei Sheng ◽  
Hengyun Zhang ◽  
Lin Su ◽  
Zhendong Zhang ◽  
Hua Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


Author(s):  
Tiantao Lu ◽  
Ankur Srivastava

This paper presents an electrical-thermal-reliability co-design technique for TSV-based 3D-ICs. Although TSV-based 3D-IC shows significant electrical performance improvement compared to traditional 2D circuit, researchers have reported strong electromigration (EM) in TSVs, which is induced by the thermal mechanical stress and the local temperature hotspot. We argue that rather than addressing 3D-IC’s EM issue after the IC designing phase, the designer should be aware of the circuit’s thermal and EM properties during the IC designing phase. For example, one should be aware that the TSVs establish vertical heat conduction path thus changing the chip’s thermal profile and also produce significant thermal mechanical stress to the nearby TSVs, which deteriorates other TSV’s EM reliability. Therefore, the number and location of TSVs play a crucial role in deciding 3D-IC’s electrical performance, changing its thermal profile, and affecting its EM-reliability. We investigate the TSV placement problem, in order to improve 3D-IC’s electrical performance and enhance its thermal-mechanical reliability. We derive and validate simple but accurate thermal and EM models for 3D-IC, which replace the current employed time-consuming finite-element-method (FEM) based simulation. Based on these models, we propose a systematic optimization flow to solve this TSV placement problem. Results show that compared to conventional performance-centered technique, our design methodology achieves 3.24x longer EM-lifetime, with only 1% performance degradation.


2014 ◽  
Vol 941-944 ◽  
pp. 1871-1875 ◽  
Author(s):  
Nikolay I. Vatin ◽  
Tatiana Nazmeeva ◽  
Roman Guslinscky

Nowadays cold bent steel thermal сold-bent С-profile is widely used in building construction but we still have some little studied questions in the fields of thermal conductivity, air permeability, resistibility and corrosion behavior of the profile. Cold-bent notched С-profile is used for interior exterior panel members. Lengthwise notches made chequerwise in the profile walls increase the distance of heat flow and decrease heat conductivity and eliminate cold bridges that is why the profile is called “thermal profile”. Cold-bent profile made by cold bending requires alternate approach when engineering structures are designed and maintained. The approach means thin walls’ and the profile special form’ impact on the bearing capacity and stability of the structures should be taken into account. In spite of the wide use of cold-bent notched C-profile in building frameworks, we see lack of information on how the notches influence the bearing capacity and stability of structures. There are no official normative documents on calculation and designing of cold-bent notched profile structures. We carry out theoretical and experimental investigations on global buckling and bearing capacity of steel members of C-shaped notched profiles of different cross-sections area. We carry out theoretical and experimental investigations on heat current passing through the thermal profile structure is held with the use of testing bed.


2007 ◽  
Vol 54 (12) ◽  
pp. 3342-3350 ◽  
Author(s):  
Sheng-Chih Lin ◽  
Greg Chrysler ◽  
Ravi Mahajan ◽  
Vivek K. De ◽  
Kaustav Banerjee

Author(s):  
Aérica C. Nazareno ◽  
Iran J. O. da Silva ◽  
Frederico M. C. Vieira ◽  
Rofson F. S. Santos

The aim of this study was to assess the thermal profile of truck with different levels of box placement during one day-old chicks transport. An experiment was conducted through monitoring of 11 transport loads. A acclimatized truck was used in this research, with maximum capacity of 630 one day-old chicks boxes, totalizing 63,000 animals. The assessment of thermal environment was performed in 5 min intervals, through the following variables: temperature, relative humidity and specific enthalpy. The treatments were registered at two levels of the load (first rack and floor) where 17 data loggers were distributed throughout the truck. The experiment used a completely randomized design and geostatistics was used for spatial dependency and Kriging interpolation. The microclimatic conditions of the truck were not as per recommended values, which confirm a heterogeneous distribution of heat and moisture in environment. Regarding the box positioning, the mean values of thermal variables associated with thermal comfort of one day-old chicks was found in the floor area. The most stressful environment for birds inside the truck was located in front and at the center of the truck.


Sign in / Sign up

Export Citation Format

Share Document