High intrapatient HIV-1 evolutionary rate is associated with CCR5-to-CXCR4 coreceptor switch

2013 ◽  
Vol 19 ◽  
pp. 369-377 ◽  
Author(s):  
Mattias Mild ◽  
Rebecca R. Gray ◽  
Anders Kvist ◽  
Philippe Lemey ◽  
Maureen M. Goodenow ◽  
...  
Virus Genes ◽  
2018 ◽  
Vol 54 (3) ◽  
pp. 457-460 ◽  
Author(s):  
Naoya Shinohara ◽  
Chieko Matsumoto ◽  
Keiji Matsubayashi ◽  
Tadashi Nagai ◽  
Masahiro Satake

2018 ◽  
Vol 66 ◽  
pp. 43-47 ◽  
Author(s):  
Juan Á. Patiño-Galindo ◽  
Francisco Domínguez ◽  
María T. Cuevas ◽  
Elena Delgado ◽  
Mónica Sánchez ◽  
...  

2013 ◽  
Vol 32 (12) ◽  
pp. 1565-1570 ◽  
Author(s):  
S. Baroncelli ◽  
C. M. Galluzzo ◽  
M. Andreotti ◽  
M. F. Pirillo ◽  
V. Fragola ◽  
...  

2008 ◽  
Vol 82 (23) ◽  
pp. 11758-11766 ◽  
Author(s):  
Mia Coetzer ◽  
Rebecca Nedellec ◽  
Janelle Salkowitz ◽  
Sherry McLaughlin ◽  
Yi Liu ◽  
...  

ABSTRACT The envelope gene (env) of human immunodeficiency virus type 1 (HIV-1) undergoes rapid divergence from the transmitted sequence and increasing diversification during the prolonged course of chronic infection in humans. In about half of infected individuals or more, env evolution leads to expansion of the use of entry coreceptor from CCR5 alone to CCR5 and CXCR4. The stochastic nature of this coreceptor switch is not well explained by host selective forces that should be relatively constant between infected individuals. Moreover, differences in the incidence of coreceptor switching among different HIV-1 subtypes suggest that properties of the evolving virus population drive the switch. We evaluated the functional properties of sequential env clones from a patient with evidence of coreceptor switching at 5.67 years of infection. We found an abrupt decline in the ability of viruses to use CCR5 for entry at this time, manifested by a 1- to 2-log increase in susceptibility to CCR5 inhibitors and a reduced ability to infect cell lines with low CCR5 expression. There was an abnormally rapid 5.4% divergence in env sequences from 4.10 to 5.76 years of infection, with the V3 and V4/V5 regions showing the greatest divergence and evidence of positive selection. These observations suggest that a decline in the fitness of R5 virus populations may be one driving force that permits the emergence of R5X4 variants.


2000 ◽  
Vol 74 (14) ◽  
pp. 6689-6694 ◽  
Author(s):  
Alessandra Borsetti ◽  
Cristina Parolin ◽  
Barbara Ridolfi ◽  
Leonardo Sernicola ◽  
Andrea Geraci ◽  
...  

ABSTRACT The infection of CD4-negative cells by variants of tissue culture-adapted human immunodeficiency virus type 1 (HIV-1) or HIV-2 strains has been shown to be mediated by the CXCR4 coreceptor. Here we show that two in vitro-established CD4−/CCR5−/CXCR4+ human pre-T-cell lines (A3 and A5) can be productively infected by wild-type laboratory-adapted T-cell-tropic HIV-1 and HIV-2 strains in a CD4-independent, CXCR4-dependent fashion. Despite the absence of CCR5 expression, A3 and A5 cells were susceptible to infection by the simian immunodeficiency viruses SIVmac239 and SIVmac316. Thus, at least in A3 and A5 cells, one or more of the chemokine receptors can efficiently support the entry of HIV and SIV isolates in the absence of CD4. These findings suggest that to infect cells of different compartments, HIV and SIV could have evolved in vivo to bypass CD4 and to interact directly with an alternative receptor.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1689
Author(s):  
Arshan Nasir ◽  
Mira Dimitrijevic ◽  
Ethan Romero-Severson ◽  
Thomas Leitner

HIV-1 is a fast-evolving, genetically diverse virus presently classified into several groups and subtypes. The virus evolves rapidly because of an error-prone polymerase, high rates of recombination, and selection in response to the host immune system and clinical management of the infection. The rate of evolution is also influenced by the rate of virus spread in a population and nature of the outbreak, among other factors. HIV-1 evolution is thus driven by a range of complex genetic, social, and epidemiological factors that complicates disease management and prevention. Here, we quantify the evolutionary (substitution) rate heterogeneity among major HIV-1 subtypes and recombinants by analyzing the largest collection of HIV-1 genetic data spanning the widest possible geographical (100 countries) and temporal (1981–2019) spread. We show that HIV-1 substitution rates vary substantially, sometimes by several folds, both across the virus genome and between major subtypes and recombinants, but also within a subtype. Across subtypes, rates ranged 3.5-fold from 1.34 × 10−3 to 4.72 × 10−3 in env and 2.3-fold from 0.95 × 10−3 to 2.18 × 10−3 substitutions site−1 year−1 in pol. Within the subtype, 3-fold rate variation was observed in env in different human populations. It is possible that HIV-1 lineages in different parts of the world are operating under different selection pressures leading to substantial rate heterogeneity within and between subtypes. We further highlight how such rate heterogeneity can complicate HIV-1 phylodynamic studies, specifically, inferences on epidemiological linkage of transmission clusters based on genetic distance or phylogenetic data, and can mislead estimates about the timing of HIV-1 lineages.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1312
Author(s):  
Maoz Gelbart ◽  
Adi Stern

Site-specific evolutionary rate shifts are defined as protein sites, where the rate of substitution has changed dramatically across the phylogeny. With respect to a given clade, sites may either undergo a rate acceleration or a rate deceleration, reflecting a site that was conserved and became variable, or vice-versa, respectively. Sites displaying such a dramatic evolutionary change may point to a loss or gain of function at the protein site, reflecting adaptation, or they may indicate epistatic interactions among sites. Here, we analyzed full genomes of HIV and SIV-1 and identified 271 rate-shifting sites along the HIV-1/SIV phylogeny. The majority of rate shifts occurred at long branches, often corresponding to cross-species transmission branches. We noted that in most proteins, the number of rate accelerations and decelerations was equal, and we suggest that this reflects epistatic interactions among sites. However, several accessory proteins were enriched for either accelerations or decelerations, and we suggest that this may be a signature of adaptation to new hosts. Interestingly, the non-pandemic HIV-1 group O clade exhibited a substantially higher number of rate-shift events than the pandemic group M clade. We propose that this may be a reflection of the height of the species barrier between gorillas and humans versus chimpanzees and humans. Our results provide a genome-wide view of the constraints operating on proteins of HIV-1 and SIV.


Sign in / Sign up

Export Citation Format

Share Document