diverse virus
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Annette Choi ◽  
Deanndria Singleton ◽  
Alison Stout ◽  
Jean Millet ◽  
Gary Whittaker

The Coronaviridae is a highly diverse virus family, with reservoir hosts in a variety of wildlife species that encompass bats, birds and small mammals, including rodents. Within the taxonomic group alphacoronavirus, certain sub-genera (including the luchacoviruses) have phylogenetically distinct spike proteins, which remain essentially uncharacterized. Using in vitro and computational techniques, we analyzed the spike protein of the rodent coronavirus AcCoV-JC34 from the sub-genus luchacovirus, previously identified in Apodemus chevrieri (Chevriers field mouse). We show that AcCoV-JC34, unlike the other luchacoviruses, has a putative furin cleavage site (FCS) within its spike S1 domain, close to the S1/S2 interface. The pattern of basic amino acids within the AcCoV-JC34 FCS (-RR-R-) is identical to that found in pre-variant SARS-CoV-2, which is in itself atypical for an FCS, and suboptimal for furin cleavage. Our analysis shows that, while containing an -RR-R- motif, the AcCoVJC34 spike FCS is not cleaved by furin (unlike for SARS-CoV-2), suggesting the possible presence of a progenitor sequence for viral emergence from a distinct wildlife host.


2021 ◽  
Vol 20 (11) ◽  
pp. 2387-2393
Author(s):  
Ali AL-Samydai ◽  
Maha N Abu Hajleh ◽  
Amal Akour ◽  
Naeem Shalan ◽  
Nisrein Jaber ◽  
...  

Purpose: To evaluate the anti-SARS CoV-2 effect of Coenzyme Q 10, Ubiquinol-10, and idebenone, which have beneficial therapeutic applications against diverse virus types, using molecular docking approach.Methods: The potential activity of Coenzyme Q10, Ubiquinol-10, and Idebenone against viral infections was explored through the collection of data from relevant literature, and by modelling these compounds virtually, using in silico investigation methods.Results: Coenzyme Q10 and ubiquinol-10 showed significant docking performance. They interacted with numerous amino acid residues of the main protease of SARS-CoV-2 ACE2 (7C8J), Alpha thrombin (1AE8), TYRO (4TS1) protein targets sides, SARS-coronavirus Orf7a accessory protein (1XAK), TNF (1RJ8), and Cytokine/receptor (1I1R).Conclusion: The findings of our study showed promising inhibitory activities of the selected compounds against the main proteases of SARS-CoV-2. Consequently, these compounds have theoretical effects on inhibiting the viral entry, reproduction, and ultimately the prevention and/or treatment of the SARSCoV2 infection.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1817
Author(s):  
Renu Geetha Bai ◽  
Rando Tuvikene

Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1689
Author(s):  
Arshan Nasir ◽  
Mira Dimitrijevic ◽  
Ethan Romero-Severson ◽  
Thomas Leitner

HIV-1 is a fast-evolving, genetically diverse virus presently classified into several groups and subtypes. The virus evolves rapidly because of an error-prone polymerase, high rates of recombination, and selection in response to the host immune system and clinical management of the infection. The rate of evolution is also influenced by the rate of virus spread in a population and nature of the outbreak, among other factors. HIV-1 evolution is thus driven by a range of complex genetic, social, and epidemiological factors that complicates disease management and prevention. Here, we quantify the evolutionary (substitution) rate heterogeneity among major HIV-1 subtypes and recombinants by analyzing the largest collection of HIV-1 genetic data spanning the widest possible geographical (100 countries) and temporal (1981–2019) spread. We show that HIV-1 substitution rates vary substantially, sometimes by several folds, both across the virus genome and between major subtypes and recombinants, but also within a subtype. Across subtypes, rates ranged 3.5-fold from 1.34 × 10−3 to 4.72 × 10−3 in env and 2.3-fold from 0.95 × 10−3 to 2.18 × 10−3 substitutions site−1 year−1 in pol. Within the subtype, 3-fold rate variation was observed in env in different human populations. It is possible that HIV-1 lineages in different parts of the world are operating under different selection pressures leading to substantial rate heterogeneity within and between subtypes. We further highlight how such rate heterogeneity can complicate HIV-1 phylodynamic studies, specifically, inferences on epidemiological linkage of transmission clusters based on genetic distance or phylogenetic data, and can mislead estimates about the timing of HIV-1 lineages.


Author(s):  
Roland Zell ◽  
Nick J. Knowles ◽  
Peter Simmonds

AbstractThe highly diverse virus family Picornaviridae presently comprises 68 approved genera with 158 species plus many unassigned viruses. In order to better match picornavirus taxonomy to the functional and genomic groupings between genera, the establishment of five subfamilies (Caphthovirinae, Kodimesavirinae, Ensavirinae, Paavivirinae and Heptrevirinae) is proposed. The subfamilies are defined by phylogenetic analyses of 3CD (precursor of virus-encoded proteinase and polymerase) and P1 (capsid protein precursor) coding sequences and comprise between 7 and 22 currently approved virus genera. Due to the high within-subfamily and between-subfamily divergences of the picornavirus genera, p-distance estimates are unsuited for the demarcation of subfamilies. Members of the proposed subfamilies typically show some commonalities in their genome organisations, including VP1/2A cleavage mechanisms and possession of leader proteins. Other features, such as internal ribosomal entry site types, are more variable within and between members of genera. Some subfamilies are characterised by homology of proteins 1A, 2A, 2B and 3A encoded by members, which do not belong to the canon of orthologous picornavirus proteins. The proposed addition of a subfamily layer to the taxonomy of picornaviruses provides a valuable additional organisational level to the family that acknowledges the existence of higher-level evolutionary groupings of its component genera.


2021 ◽  
Author(s):  
Callum Talbot-Cooper ◽  
Teodors Pantelejevs ◽  
John P. Shannon ◽  
Christian R. Cherry ◽  
Marcus T. Au ◽  
...  

The induction of interferon-stimulated genes by signal transducer and activator of transcription (STAT) proteins, is a critical host defence to fight virus infections. Here, a highly expressed poxvirus protein 018 is shown to inhibit IFN-induced signalling by binding the SH2 domain of STAT1 to prevent STAT1 association with an activated IFN receptor. Despite the presence of additional inhibitors of IFN-induced signalling, a poxvirus lacking 018 was attenuated in mice. The 2.0-angstrom crystal structure of the 018:STAT1 complex reveals a mechanism for a high-affinity, pTyr-independent mode of binding to an SH2 domain. Furthermore, the STAT1 binding motif of 018 shows sequence similarity to the STAT1-binding proteins from Nipah virus, which like 018, block the association of STAT1 with an IFN receptor. Taken together, these results provide detailed mechanistic insight into a potent mode of STAT1 antagonism, found to exist in genetically diverse virus families.


2021 ◽  
Author(s):  
Xiao Luo ◽  
Xiongbin Kang ◽  
Alexander Schoenhuth

Haplotype-resolved de novo assembly of highly diverse virus genomes is critical in prevention, control and treatment of viral diseases. Current methods either can handle only relatively accurate short read data, or collapse haplotype-specific variations into consensus sequence. Here, we present Strainline, a novel approach to assemble viral haplotypes from noisy long reads without a reference genome. As a crucial consequence, Strainline is the first approach to provide strain-resolved, full-length de novo assemblies of viral quasispecies from noisy third-generation sequencing data. Benchmarking experiments on both simulated and real datasets of varying complexity and diversity confirm this novelty, by demonstrating the superiority of Strainline in terms of relevant criteria in comparison with the state of the art.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252534
Author(s):  
Isabelle Hardmeier ◽  
Nadja Aeberhard ◽  
Weihong Qi ◽  
Katja Schoenbaechler ◽  
Hubert Kraettli ◽  
...  

Many recent disease outbreaks in humans had a zoonotic virus etiology. Bats in particular have been recognized as reservoirs to a large variety of viruses with the potential to cross-species transmission. In order to assess the risk of bats in Switzerland for such transmissions, we determined the virome of tissue and fecal samples of 14 native and 4 migrating bat species. In total, sequences belonging to 39 different virus families, 16 of which are known to infect vertebrates, were detected. Contigs of coronaviruses, adenoviruses, hepeviruses, rotaviruses A and H, and parvoviruses with potential zoonotic risk were characterized in more detail. Most interestingly, in a ground stool sample of a Vespertilio murinus colony an almost complete genome of a Middle East respiratory syndrome-related coronavirus (MERS-CoV) was detected by Next generation sequencing and confirmed by PCR. In conclusion, bats in Switzerland naturally harbour many different viruses. Metagenomic analyses of non-invasive samples like ground stool may support effective surveillance and early detection of viral zoonoses.


2021 ◽  
Author(s):  
Ahmed M. Moustafa ◽  
William Otto ◽  
Xiaowu Gai ◽  
Utsav Pandey ◽  
Alex Ryutov ◽  
...  

AbstractBackgroundIn the US, community circulation of the SARS-CoV-2 virus likely began in February 2020 after mostly travel-related cases. Children’s Hospital of Philadelphia began testing on 3/9/2020 for pediatric and adult patients, and for all admitted patients on 4/1/2020, allowing an early glimpse into the local molecular epidemiology of the virus.MethodsWe obtained 169 SARS-CoV-2 samples (83 from patients <21 years old) from March through May and produced whole genome sequences. We used genotyping tools to track variants over time and to test for possible genotype associated clinical presentations and outcomes in children.ResultsOur analysis uncovered 13 major lineages that changed in relative abundance as cases peaked in mid-April in Philadelphia. We detected at least 6 introductions of distinct viral variants into the population. As a group, children had more diverse virus genotypes than the adults tested. No strong differences in clinical variables were associated with genotypes.ConclusionsWhole genome analysis revealed unexpected diversity, and distinct circulating viral variants within the initial peak of cases in Philadelphia. Most introductions appeared to be local from nearby states. Although limited by sample size, we found no evidence that different genotypes had different clinical impacts in children in this study.SummaryUsing sequencing and a novel technique for quantifying SARS-CoV-2 diversity, we investigated 169 SARS-CoV-2 genomes (83 <21 years old). This analysis revealed unexpected diversity especially in children. No clear differences in clinical presentation were associated with the different virus lineages.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kazi Rahman ◽  
Charles A Coomer ◽  
Saliha Majdoul ◽  
Selena Y Ding ◽  
Sergi Padilla-Parra ◽  
...  

The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline-rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was previously linked to paroxysmal neurological disorders in humans. Here, we show that glycine-305 and the homologous site in IFITM3, glycine-95, drive protein oligomerization from within a GxxxG motif. Mutation of glycine-95 (and to a lesser extent, glycine-91) disrupted IFITM3 oligomerization and reduced its antiviral activity against Influenza A virus. An oligomerization-defective variant was used to reveal that IFITM3 promotes membrane rigidity in a glycine-95-dependent and amphipathic helix-dependent manner. Furthermore, a compound which counteracts virus inhibition by IFITM3, Amphotericin B, prevented the IFITM3-mediated rigidification of membranes. Overall, these data suggest that IFITM3 oligomers inhibit virus-cell fusion by promoting membrane rigidity.


Sign in / Sign up

Export Citation Format

Share Document