Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus

2018 ◽  
Vol 58 ◽  
pp. 145-156 ◽  
Author(s):  
Stéphanie Sherpa ◽  
Delphine Rioux ◽  
Charlotte Pougnet-Lagarde ◽  
Laurence Després
Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 822
Author(s):  
Charalampos S. Ioannou ◽  
Christos Hadjichristodoulou ◽  
Varvara A. Mouchtouri ◽  
Nikos T. Papadopoulos

Aedes albopictus is an invasive mosquito species responsible for local transmission of chikungunya and dengue viruses in Europe. In the absence of available treatments, insecticides-based control remains one of the most important viable strategies to prevent emerging problems. Diflubenzuron (DFB) and Bacillus thuringiensis var. israelensis (Bti) are among the most commonly used larvicides for Ae. albopictus control with consequent concerns for the potential development of resistance. Studies on the resistance emergence in Ae. albopictus and its persistence in the wild to both DFB and Bti are essential for the efficient and sustainable planning of the control programmes. In this context, larvae from a recently laboratory established population were subjected to increasing selective pressure for nine successive generations using both DFB and Bti. The resistance levels and the overwintering success of the selected populations relative to control (colonies that received no selection) were determined. Results revealed an 8.5- and 1.6-fold increase on the resistance levels following selection with DFB and Bti, respectively. The selection process to both larvicides had no apparent impacts on the overwintering capability relative to control, suggesting the successful persistence of the selected individuals in the wild on an annual base.


2021 ◽  
Author(s):  
◽  
Gemma Bowker-Wright

<p>Pateke/brown teal (Anas chlorotis) have experienced a severe population crash leaving only two remnant wild populations (at Great Barrier Island and Mimiwhangata, Northland). Recovery attempts over the last 35 years have focused on an intensive captive breeding programme which breeds pateke, sourced almost exclusively from Great Barrier Island, for release to establish re-introduced populations in areas occupied in the past. While this important conservation measure may have increased pateke numbers, it was unclear how much of their genetic diversity was being retained. The goal of this study was to determine current levels of genetic variation in the remnant, captive and re-introduced pateke populations using two types of molecular marker, mitochondrial DNA (mtDNA) and microsatellite DNA. Feathers were collected from pateke at Great Barrier Island, Mimiwhangata, the captive breeding population and four re-introduced populations (at Moehau, Karori Wildlife Sanctuary, Tiritiri Matangi Island and Mana Island). DNA was extracted from the base of the feathers, the mitochondrial DNA control region was sequenced, and DNA microsatellite markers were used to genotype individuals. The Great Barrier Island population was found to have only two haplotypes, one in very high abundance which may indicate that historically this population was very small. The captive breeding population and all four re-introduced populations were found to contain only the abundant Great Barrier Island haplotype as the vast majority of captive founders were sourced from this location. In contrast, the Mimiwhangata population contained genetic diversity and 11 haplotypes were found, including the Great Barrier Island haplotype which may have been introduced by captive-bred releases which occurred until the early 1990s. From the microsatellite results, a loss of genetic diversity (measured as average alleles per locus, heterozygosity and allelic richness) was found from Great Barrier Island to captivity and from captivity to re-introduction. Overall genetic diversity within the re-introduced populations (particularly the smaller re-introduced populations at Karori Wildlife Sanctuary, Tiritiri Matangi Island and Mana Island) was much reduced compared with the remnant populations, most probably as a result of small release numbers and small population size. Such loss of genetic diversity could render the re-introduced populations more susceptible to inbreeding depression in the future. Suggested future genetic management options are included which aim for a broader representation of genetic diversity in the pateke captive breeding and release programme.</p>


Phycologia ◽  
2006 ◽  
Vol 45 (6) ◽  
pp. 687-695 ◽  
Author(s):  
Shinya Uwai ◽  
Wendy Nelson ◽  
Kate Neill ◽  
Wei Ding Wang ◽  
Luis E. Aguilar-Rosas ◽  
...  

2020 ◽  
Vol 35 ◽  
pp. 101691 ◽  
Author(s):  
Romeo Bellini ◽  
Antonios Michaelakis ◽  
Dušan Petrić ◽  
Francis Schaffner ◽  
Bulent Alten ◽  
...  

Author(s):  
Peter Kaňuch ◽  
Åsa Berggren ◽  
Anna Cassel-Lundhagen

AbstractOne of the fundamental questions in invasion biology is to understand the genetic mechanisms behind success or failure during the establishment of a species. However, major limitations to understanding are usually a lack of spatiotemporal population data and information on the populations’ colonisation history. In a large-scale, detailed study on the bush-cricket Metrioptera roeselii 70 groups of founders were introduced in areas outside the species’ distribution range. We examined how (1) the number of founders (2–32 individuals), (2) the time since establishment (7 or 15 years after introduction) and (3) possible gene flow affected establishment success and temporal genetic changes of the introduced populations. We found higher establishment success in introductions with larger propagule sizes but genetic diversity indices were only partly correlated to propagule size. As expected, introduced populations were more similar to their founder population the larger the propagule size was. However, even if apparent at first, most of the differentiation in the small propagule introductions disappeared over time. Surprisingly, genetic variability was regained to a level comparable to the large and outbreeding founder population only 15 generations after severe demographic bottlenecks. We suggest that the establishment of these populations could be a result of several mechanisms acting in synergy. Here, rapid increase in genetic diversity of few introductions could potentially be attributed to limited gene flow from adjacent populations, behavioural adaptations and/or even increased mutation rate. We present unique insights into genetic processes that point towards traits that are important for understanding species’ invasiveness.


2020 ◽  
Vol 60 (6) ◽  
pp. 1458-1468 ◽  
Author(s):  
Haley E Hanson ◽  
Bilal Koussayer ◽  
Holly J Kilvitis ◽  
Aaron W Schrey ◽  
J Dylan Maddox ◽  
...  

Synopsis Epigenetic potential, defined as the capacity for epigenetically-mediated phenotypic plasticity, may play an important role during range expansions. During range expansions, populations may encounter relatively novel challenges while experiencing lower genetic diversity. Phenotypic plasticity via epigenetic potential might be selectively advantageous at the time of initial introduction or during spread into new areas, enabling introduced organisms to cope rapidly with novel challenges. Here, we asked whether one form of epigenetic potential (i.e., the abundance of CpG sites) in three microbial surveillance genes: Toll-like receptors (TLRs) 1B (TLR1B), 2A (TLR2A), and 4 (TLR4) varied between native and introduced house sparrows (Passer domesticus). Using an opportunistic approach based on samples collected from sparrow populations around the world, we found that introduced birds had more CpG sites in TLR2A and TLR4, but not TLR1B, than native ones. Introduced birds also lost more CpG sites in TLR1B, gained more CpG sites in TLR2A, and lost fewer CpG sites in TLR4 compared to native birds. These results were not driven by differences in genetic diversity or population genetic structure, and many CpG sites fell within predicted transcription factor binding sites (TFBS), with losses and gains of CpG sites altering predicted TFBS. Although we lacked statistical power to conduct the most rigorous possible analyses, these results suggest that epigenetic potential may play a role in house sparrow range expansions, but additional work will be critical to elucidating how epigenetic potential affects gene expression and hence phenotypic plasticity at the individual, population, and species levels.


2020 ◽  
Vol 14 (3) ◽  
pp. e0008130 ◽  
Author(s):  
Bixing Huang ◽  
Brian L. Montgomery ◽  
Rebecca Adamczyk ◽  
Gerhard Ehlers ◽  
Andrew F. van den Hurk ◽  
...  

2017 ◽  
Vol 17 (2) ◽  
pp. 140 ◽  
Author(s):  
Jolyon M Medlock ◽  
Alexander GC Vaux ◽  
Benjamin Cull ◽  
Francis Schaffner ◽  
Emma Gillingham ◽  
...  

2020 ◽  
Vol 57 (5) ◽  
pp. 1488-1500
Author(s):  
Chris M Stone ◽  
Zhen Zuo ◽  
Bo Li ◽  
Marilyn Ruiz ◽  
Jack Swanson ◽  
...  

Abstract The spread of the Asian tiger mosquito, Aedes albopictus Skuse, throughout the United States has implications for the transmission potential of vector-borne diseases. We used a 30-yr data set of occurrence records in Illinois and developed a hierarchical Bayesian model to shed light on the patterns and processes involved in the introduction and expansion along the northern edge of the geographic range of this species. We also collected specimens from 10 locations and sequenced a segment of their mitochondrial COI genes to assess possible introduction sources and geographic patterns in genetic variation present within contemporary populations. We documented an increase in the number of observations throughout the southern and central parts of Illinois over the study period. The process through which this spread occurred is likely only partially due to local dispersal. The probability of successfully overwintering was likewise low, but both these parameters increased over the study period. This suggests that the presence of Ae. albopictus has been largely due to repeated introductions, but that in recent years populations may have become established and are leading to an increase in locally driven dispersal. There was considerable genetic diversity among populations in Illinois, with 13 distinct haplotypes present in 10 sampling locations, several of which matched haplotypes previously found to be present in locations such as Texas or Japan. Further research is needed to understand how the combination of continued propagule pressure and establishment of populations are driving the increase and expansion of this invasive mosquito along its northern distribution limit.


Sign in / Sign up

Export Citation Format

Share Document