scholarly journals Epigenetic Potential in Native and Introduced Populations of House Sparrows (Passer domesticus)

2020 ◽  
Vol 60 (6) ◽  
pp. 1458-1468 ◽  
Author(s):  
Haley E Hanson ◽  
Bilal Koussayer ◽  
Holly J Kilvitis ◽  
Aaron W Schrey ◽  
J Dylan Maddox ◽  
...  

Synopsis Epigenetic potential, defined as the capacity for epigenetically-mediated phenotypic plasticity, may play an important role during range expansions. During range expansions, populations may encounter relatively novel challenges while experiencing lower genetic diversity. Phenotypic plasticity via epigenetic potential might be selectively advantageous at the time of initial introduction or during spread into new areas, enabling introduced organisms to cope rapidly with novel challenges. Here, we asked whether one form of epigenetic potential (i.e., the abundance of CpG sites) in three microbial surveillance genes: Toll-like receptors (TLRs) 1B (TLR1B), 2A (TLR2A), and 4 (TLR4) varied between native and introduced house sparrows (Passer domesticus). Using an opportunistic approach based on samples collected from sparrow populations around the world, we found that introduced birds had more CpG sites in TLR2A and TLR4, but not TLR1B, than native ones. Introduced birds also lost more CpG sites in TLR1B, gained more CpG sites in TLR2A, and lost fewer CpG sites in TLR4 compared to native birds. These results were not driven by differences in genetic diversity or population genetic structure, and many CpG sites fell within predicted transcription factor binding sites (TFBS), with losses and gains of CpG sites altering predicted TFBS. Although we lacked statistical power to conduct the most rigorous possible analyses, these results suggest that epigenetic potential may play a role in house sparrow range expansions, but additional work will be critical to elucidating how epigenetic potential affects gene expression and hence phenotypic plasticity at the individual, population, and species levels.

2021 ◽  
Vol 224 (6) ◽  
pp. jeb238451
Author(s):  
Haley E. Hanson ◽  
Cedric Zimmer ◽  
Bilal Koussayer ◽  
Aaron W. Schrey ◽  
J. Dylan Maddox ◽  
...  

ABSTRACTEpigenetic mechanisms may play a central role in mediating phenotypic plasticity, especially during range expansions, when populations face a suite of novel environmental conditions. Individuals may differ in their epigenetic potential (EP; their capacity for epigenetic modifications of gene expression), which may affect their ability to colonize new areas. One form of EP, the number of CpG sites, is higher in introduced house sparrows (Passer domesticus) than in native birds in the promoter region of a microbial surveillance gene, Toll-like Receptor 4 (TLR4), which may allow invading birds to fine-tune their immune responses to unfamiliar parasites. Here, we compared TLR4 gene expression from whole blood, liver and spleen in house sparrows with different EP, first challenging some birds with lipopolysaccharide (LPS), to increase gene expression by simulating a natural infection. We expected that high EP would predict high inducibility and reversibility of TLR4 expression in the blood of birds treated with LPS, but we did not make directional predictions regarding organs, as we could not repeatedly sample these tissues. We found that EP was predictive of TLR4 expression in all tissues. Birds with high EP expressed more TLR4 in the blood than individuals with low EP, regardless of treatment with LPS. Only females with high EP exhibited reversibility in gene expression. Further, the effect of EP varied between sexes and among tissues. Together, these data support EP as one regulator of TLR4 expression.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Aaron W. Schrey ◽  
Courtney A. C. Coon ◽  
Michael T. Grispo ◽  
Mohammed Awad ◽  
Titus Imboma ◽  
...  

Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus) exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old), and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
S. Grenier ◽  
P. Barre ◽  
I. Litrico

Selection and plasticity are two mechanisms that allow the adaptation of a population to a changing environment. Interaction between these nonexclusive mechanisms must be considered if we are to understand population survival. This review discusses the ways in which plasticity and selection can interact, based on a review of the literature on selection and phenotypic plasticity in the evolution of populations. The link between selection and phenotypic plasticity is analysed at the level of the individual. Plasticity can affect an individual’s response to selection and so may modify the end result of genetic diversity evolution at population level. Genetic diversity increases the ability of populations or communities to adapt to new environmental conditions. Adaptive plasticity increases individual fitness. However this effect must be viewed from the perspective of the costs of plasticity, although these are not easy to estimate. It is becoming necessary to engage in new experimental research to demonstrate the combined effects of selection and plasticity for adaptation and their consequences on the evolution of genetic diversity.


2010 ◽  
Vol 55 (4) ◽  
Author(s):  
Marcos Lima ◽  
Lucy Simpson ◽  
Alan Fecchio ◽  
Cynthia Kyaw

AbstractSpecies that are introduced to novel environments can lose their native pathogens and parasites during the process of introduction. The escape from the negative effects associated with these natural enemies is commonly employed as an explanation for the success and expansion of invasive species, which is termed the enemy release hypothesis (ERH). In this study, nested PCR techniques and microscopy were used to determine the prevalence and intensity (respectively) of Plasmodium spp. and Haemoproteus spp. in introduced house sparrows and native urban birds of central Brazil. Generalized linear mixed models were fitted by Laplace approximation considering a binomial error distribution and logit link function. Location and species were considered as random effects and species categorization (native or non-indigenous) as fixed effects. We found that native birds from Brazil presented significantly higher parasite prevalence in accordance with the ERH. We also compared our data with the literature, and found that house sparrows native to Europe exhibited significantly higher parasite prevalence than introduced house sparrows from Brazil, which also supports the ERH. Therefore, it is possible that house sparrows from Brazil might have experienced a parasitic release during the process of introduction, which might also be related to a demographic release (e.g. release from the negative effects of parasites on host population dynamics).


2013 ◽  
Vol 59 (4) ◽  
pp. 485-505 ◽  
Author(s):  
Jon E. Brommer

Abstract Individual-based studies allow quantification of phenotypic plasticity in behavioural, life-history and other labile traits. The study of phenotypic plasticity in the wild can shed new light on the ultimate objectives (1) whether plasticity itself can evolve or is constrained by its genetic architecture, and (2) whether plasticity is associated to other traits, including fitness (selection). I describe the main statistical approach for how repeated records of individuals and a description of the environment (E) allow quantification of variation in plasticity across individuals (IxE) and genotypes (GxE) in wild populations. Based on a literature review of life-history and behavioural studies on plasticity in the wild, I discuss the present state of the two objectives listed above. Few studies have quantified GxE of labile traits in wild populations, and it is likely that power to detect statistically significant GxE is lacking. Apart from the issue of whether it is heritable, plasticity tends to correlate with average trait expression (not fully supported by the few genetic estimates available) and may thus be evolutionary constrained in this way. Individual-specific estimates of plasticity tend to be related to other traits of the individual (including fitness), but these analyses may be anti-conservative because they predominantly concern stats-on-stats. Despite the increased interest in plasticity in wild populations, the putative lack of power to detect GxE in such populations hinders achieving general insights. I discuss possible steps to invigorate the field by moving away from simply testing for presence of GxE to analyses that ‘scale up’ to population level processes and by the development of new behavioural theory to identify quantitative genetic parameters which can be estimated.


2011 ◽  
Vol 279 (1733) ◽  
pp. 1560-1566 ◽  
Author(s):  
Lee Koren ◽  
Shinichi Nakagawa ◽  
Terry Burke ◽  
Kiran K. Soma ◽  
Katherine E. Wynne-Edwards ◽  
...  

Potential mechanistic mediators of Darwinian fitness, such as stress hormones or sex hormones, have been the focus of many studies. An inverse relationship between fitness and stress or sex hormone concentrations has been widely assumed, although empirical evidence is scarce. Feathers gradually accumulate hormones during their growth and provide a novel way to measure hormone concentrations integrated over time. Using liquid chromatography–tandem mass spectrometry, we measured testosterone, corticosterone and cortisol in the feathers of house sparrows ( Passer domesticus ) in a wild population which is the subject of a long-term study. Although corticosterone is considered the dominant avian glucocorticoid, we unambiguously identified cortisol in feathers. In addition, we found that feathers grown during the post-nuptial moult in autumn contained testosterone, corticosterone and cortisol levels that were significantly higher in birds that subsequently died over the following winter than in birds that survived. Thus, feather steroids are candidate prospective biomarkers to predict the future survival of individuals in the wild.


1973 ◽  
pp. 39-48 ◽  
Author(s):  
Carl J. Mitchell ◽  
Richard O. Hayes

Sign in / Sign up

Export Citation Format

Share Document