Effect of ion exchange capacity and water uptake on hydroxide transport in PSU-TMA membranes: A DFT and molecular dynamics study

2020 ◽  
Vol 599 ◽  
pp. 117837 ◽  
Author(s):  
Javier Luque Di Salvo ◽  
Giorgio De Luca ◽  
Andrea Cipollina ◽  
Giorgio Micale
2006 ◽  
Vol 4 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Tetsuya Yamaki ◽  
Junichi Tsukada ◽  
Masaharu Asano ◽  
Ryoichi Katakai ◽  
Masaru Yoshida

We prepared novel ion exchange membranes for possible use in polymer electrolyte fuel cells (PEFCs) by the radiation-induced graft copolymerization of styrene and new crosslinker bis(vinyl phenyl)ethane (BVPE) into crosslinked polytetrafluoroethylene (cPTFE) films and subsequent sulfonation and then investigated their water uptake, proton conductivity, and stability in an oxidizing environment. In contrast to the conventional crosslinker, divinylbenzene (DVB), the degree of grafting of styrene∕BVPE increased in spite of high crosslinker concentrations in the reacting solution (up to 70mol%). Quantitative sulfonation of the aromatic rings in the crosslinked graft chains resulted in the preparation of membranes with a high ion exchange capacity that reached 2.9meq∕g. The bulk properties of the membranes were found to exceed those of Nafion membranes except for chemical stability. The emphasis was on the fact that the BVPE-crosslinked membranes exhibited the higher stability in the H2O2 solution at 60°C compared to the noncrosslinked and DVB-crosslinked ones, as well as decreased water uptake and reasonable proton conductivity. These results are rationalized by considering the reactivity between styrene and the crosslinker, which is an important factor determining the distribution of the crosslinks in the graft component. In the case of BVPE, the crosslinks at a high density were homogeneously incorporated even into the interior of the membrane because of its compatibility with styrene while the far too reactive DVB led to a crosslink formation only near the surface. The combination of both the cPTFE main chain and BVPE-based grafts, i.e., a perfect “double” crosslinking structure, is likely to effectively improve the membrane performances for PEFC applications.


2020 ◽  
Vol MA2020-02 (38) ◽  
pp. 2442-2442
Author(s):  
Garrett Huang ◽  
Mrinmay Mandal ◽  
Alexandra Dobbs ◽  
Katelyn Groenhout ◽  
Paul A Kohl

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdul Hamid ◽  
Muhammad Khan ◽  
Fakhar Hussain ◽  
Amir Zada ◽  
Tiehu Li ◽  
...  

Abstract Three types (type-A, B, and C) of composite polymeric membranes (CPMs) based on poly vinyl chloride (PVC) and different fillers (sodium polyacrylate and sodium polyacrylate-graphite) soaked in water and 0.5 N HCl were prepared using solvent casting method. Different physicochemical parameters such as microscopic surface study, water uptake, perpendicular swelling, density, porosity (ε), ion exchange capacity, and conductivity of the as the prepared CPMs were evaluated. Interestingly, type-A CPM cast with filler-A has greater values of the above parameters except density and ionic conductivity than those of type-B and C CPMs. The water uptake of type-A, B and C composite membranes was respectively in the range of 220.42–534.70, 59.64–41.65, and 15.94–2.62%. Ion exchange capacity of type-A, B and C CPMs was in the range of 3.669 × 107–2.156 × 107, 5.948 × 107–1.258 × 107, and 1.454 × 107–1.201 × 107 m.eq.g−1 respectively while the conductivity order was type-A < B < C. These types of CPMs may be helpful in many applications including proton exchange membranes, fuel cell like devices, as sensors for different metals, gas purification, water treatment, and battery separators.


2014 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Bambang Piluharto ◽  
Imam Syafi’i ◽  
R. Indahsari ◽  
Tanti Haryati

Sulfonated polysulfone membrane is one of the alternative membranes as replacing Nafion membrane for the fuel cell application. This membrane was prepared by introducing sulfonic group in the polysulfone structure backbone, so that provides the ionic membrane. However, more ionic groups in the SPSF membrane lead to loss mechanical stability. This study aims to prepare the hybrid membrane from SPSF and bentonite. In here, various of bentonite concentrations were used as variable to study water uptake and ion-exchange capacity properties. As the results, increasing bentonite concentrations lead to increase water uptake and ion-exchange capacity. By the functional group analysis, proved that adding bentonite in SPSF did not change structure of SPSF, means that interaction between SPSF and bentonite were physical interactions.


Author(s):  
Hyung-Hwan An ◽  
◽  
Changyun Shin ◽  

We studied a new ion exchanger for high ion exchange capacity (IEC) and rapid ion exchange. Polystyrene nanofiber ion exchangers (PSNIEs) were prepared by electrospinning from solutions of dissolved polystyrene followed by sulfonation. Coating and sulfonation were used to modify the glass fiber surface with polystyrene to produce cation exchanger fiber (CEF). We present new experimental results on the performance of PSNIE and CEF related to parameters of IEC, water uptake, and surface morpoholgy. IEC and water uptake of PSNIE depend on sulfonation time. IEC reached 3.74 mmol/g at relatively high water uptake of 0.6 to 0.77g H2O/g-dry-PNIE. IEC and water uptake of CEF reached 3.61mmol/g-CEF and 0.25g H2O/g-dry-CEF.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 352
Author(s):  
Paulina A. Sosa-Fernández ◽  
Jan W. Post ◽  
Harrison L. Nabaala ◽  
Harry Bruning ◽  
Huub Rijnaarts

Electrodialysis (ED) has been recently proposed to desalinate polymer-flooding produced water (PFPW), a byproduct stream from the oil and gas industry rich in charged polymers. However, process performance is limited by fouling occurring on the ion-exchange membranes, particularly on the anionic ones (AEMs). Thus, this study aimed to correlate the properties of different AEMs with their performance while desalinating PFPW, ultimately evaluating their significance when fouling is to be minimized and operation improved. Six stacks containing different homogeneous and commercially available AEMs were employed to desalinate synthetic PFPW during 8-days ED experiments operated in reversal mode. AEMs recovered from the stacks were analyzed in terms of water uptake, ion-exchange capacity, permselectivity, and area resistance, and compared with virgin AEMs. Relatively small changes were measured for most of the parameters evaluated. For most AEMs, the water uptake and resistance increased, while the ion-exchange capacity (IEC) and permselectivity decreased during operation. Ultimately, AEMs with high area resistance were linked to the fast development of limiting current conditions in the stack, so this property turned out to be the most relevant when desalinating PFPW.


2013 ◽  
Vol 860-863 ◽  
pp. 803-806 ◽  
Author(s):  
Loh Kee Shyuan ◽  
Eng Lee Tan ◽  
Wan Ramli Wan Daud ◽  
Abu Bakar Mohamad

A diverse sulfonated polybenzimidazole copolymer (SPBI) as proton exchange membrane was synthesiszed via one-step high temperature polymerization method with 3,3-diaminobenzidine (DABD), 5-sulfoisophthalic acid (SIPA), 4,4-sulfonyldibenzoic acid (SDBA) and biphenyl-4,4-dicarboxylic acid (BDCA). The SPBI membrane was prepared through a direct hot-casting and in situ phase inversion technique. Characterization tests were carried out on the membranes including surface morphology, distribution of elements on the membrane, determination of functional groups, thermal stability, ion exchange capacity, water uptake rate and proton conductivity. The as-synthesized SPBI membrane displayed a smooth surface via scanning electron microscopy (SEM) analysis which is thermally stable up to 443 °C. The SPBI membrane showed higher water uptake rate (WUR) and proton conductivity though it had lower ion exchange capacity (IEC) value compared to recast Nafion membrane. The proton conductivity of the SPBI membrane with IEC of 0.60 mmol/g was 4.50 × 10-2 S/cm at 90 °C. This study shows that the SPBI membrane has great potential in polymer exchange membrane fuel cell (PEMFC) applications.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Edward M. A. Guerrero-Gutiérrez

Polymeric membrane technologies demand the synthesis of new polymers to enhance their equilibrium, thermal, and transport properties. Therefore, the focus of this investigation was the evaluation of the equilibrium and thermal properties of a sulfonated fluoroblock copolymer blend membrane composed of sulfonated poly(styrene-isobutylene-styrene) (SIBS SO3H) and a novel sulfonated fluoroblock copolymer composed of poly(4-fluo- rostyrene) (P4FS), poly(styrene) (PS) and poly(isobutylene) (PIB). The fluoroblock copolymer was synthesized using Atom Transfer Radical Polymerization (ATRP) and cationic polymerization. First, the molecular weight and the thermal stability of the block copolymer were determined using Gel Permeation Chromatography (GPC) and Thermogravimetric Analysis (TGA). Second, the chemical composition was monitored utilizing Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The molecular weight of P4FS-b-PS was Mn ~ 36,100; this value increased 8% after the cationic polymerization. The equilibrium properties of the membrane were evaluated using the water uptake and Ion-Exchange Capacity. The degradation behavior and the thermal transitions were determined using TGA and Differential Scanning Calorimetry (DSC), respectively. This newly membrane exhibited water uptake higher than 608% related to the improvement of 36% in the ion-exchange capacity and the increment of 25.31% and 25.24% in the energy required to produce the thermal transitions induced by the addition of the sulfonated fluoroblock copolymer.


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


Sign in / Sign up

Export Citation Format

Share Document