Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers

2021 ◽  
Vol 640 ◽  
pp. 119740
Author(s):  
Li Zhang ◽  
Nigel Graham ◽  
Nicolas Derlon ◽  
Youneng Tang ◽  
Muhammad Saboor Siddique ◽  
...  
2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


1995 ◽  
Vol 10 (11) ◽  
pp. 2685-2688 ◽  
Author(s):  
Qijin Chen ◽  
Zhangda Lin

Diamond film was synthesized on thin Ti wafers (as thin as 40 μm) via hot filament chemical vapor deposition (HFCVD). The hydrogen embrittlement of the titanium substrate and the formation of a thick TiC interlayer were suppressed. A very low pressure (133 Pa) was employed to achieve high-density rapid nucleation and thus to suppress the formation of TiC. Oxygen was added to source gases to lower the growth temperature and therefore to slow down the hydrogenation of the thin Ti substrate. The role of the very low pressure during nucleation is discussed, providing insight into the nucleation mechanism of diamond on a titanium substrate. The as-grown diamond films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and x-ray analysis.


1986 ◽  
Vol 250 (4) ◽  
pp. H558-H566 ◽  
Author(s):  
F. L. Hanley ◽  
M. T. Grattan ◽  
M. B. Stevens ◽  
J. I. Hoffman

The role of cardiac interstitial adenosine as an important metabolite in coronary autoregulation has not been established. We therefore measured steady-state cardiac interstitial adenosine concentration at a high and a low coronary inflow pressure using an epicardial diffusion well in anesthetized dogs. Although coronary resistance for the high and low pressure points showed highly significant differences (P less than 0.001), adenosine averaged 302 +/- 98 and 286 +/- 91 (SD) pmol/ml for the high and low pressure points, respectively (P greater than 0.20). Cardiac interstitial adenosine concentration was then measured with and without an intracoronary infusion of adenosine deaminase catalytic subunit. Adenosine averaged 28 +/- 21 (SD) pmol/ml during the infusion compared with 281 +/- 68 during control conditions (P less than 0.001). Finally, pressure-flow relations were obtained with and without the adenosine deaminase infusion, and there was no loss of autoregulation in the pressure of adenosine deaminase. These findings indicate that intracoronary adenosine deaminase markedly reduces interstitial adenosine concentration, that cardiac interstitial adenosine concentration remains constant during autoregulation, and that the coronary bed autoregulates normally when interstitial adenosine is reduced to levels close to zero. We conclude that cardiac interstitial adenosine concentration is not an important component in coronary autoregulation.


2019 ◽  
Vol 5 (12) ◽  
pp. 2242-2250
Author(s):  
Xue Shen ◽  
Baoyu Gao ◽  
Kangying Guo ◽  
Qinyan Yue

Coagulation prior to the ultrafiltration (UF) process was implemented to improve natural organic matter (NOM) removal and membrane permeability.


1976 ◽  
Vol 33 (12) ◽  
pp. 2800-2804 ◽  
Author(s):  
D. R. S. Lean

Radiotracer kinetics using carrier-free 32P-PO4 were conducted on samples of water from Heart Lake, Ontario. Results obtained using 0.45-μm membrane filters were compared with those for 0.1 μm at vacuums of 400 mm Hg and to those for 0.45-μm filters using very low-pressure (4 mm Hg) filtration. The difference between 0.45 and 0.1 can reach 8–20% of the total radioactivity during the first 10 min of the experiment. After 60 min the fraction removed by 0.1, but not 0.45-μm filters, declines to only 1% of the total radioactivity, but this may represent as much as 50% of that which goes through 0.45 μm. The low-pressure filtration techniques provided similar results to those for normal filtration when kinetics were monophasic. Later in the season, the low-pressure method was shown to provide confusing artifacts that were explained by the hypothesis that tiny filaments extend from the surfaces of some species of aquatic algae and bacteria and are often dislodged during filtration.


2011 ◽  
Vol 44 (1) ◽  
pp. 3800-3805
Author(s):  
Filip Logist ◽  
Jan Van Dierdonck ◽  
Rob Van den Broeck ◽  
Chris Dotremont ◽  
Pieter Nijskens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document