Exfoliation of lamellar SAPO-34 zeolite to nanosheets and synthesis of thin SAPO-34 membranes by a nanosheet-seeded secondary growth approach

2021 ◽  
pp. 120177
Author(s):  
Bin Wang ◽  
Nana Wang ◽  
Xuewen Li ◽  
Rongfei Zhou ◽  
Weihong Xing
Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


2016 ◽  
Vol 5 (04) ◽  
pp. 4958
Author(s):  
Dulal De

Hymenachne acutigluma (Steud.) Gilliland, a robust rhizomatous perennial grass spreads on moist and swampy land and also floating in water. Being a grass species, they do not have any cambium for secondary growth. A peculiarity in stem anatomy especially the spongy pith of secondary tissues found in absence of the cambium. The origin and development of the parenchymatous pith tissues has been investigated in the present study. Economically this spongy pith is of very much potent for its high absorbing and filtering capacity and also used as a good fodder.


2021 ◽  
pp. 125853
Author(s):  
Vicente Rozas ◽  
Ana I. García-Cervigón ◽  
Miguel García-Hidalgo ◽  
Erik Rodríguez-García ◽  
José M. Olano

2021 ◽  
Vol 127 (9) ◽  
Author(s):  
Andre Mayer ◽  
Tobias Haeger ◽  
Manuel Runkel ◽  
Johannes Rond ◽  
Johannes Staabs ◽  
...  

AbstractThe quality and the stability of devices prepared from polycrystalline layers of organic–inorganic perovskites highly depend on the grain sizes prevailing. Tuning of the grain size is either done during layer preparation or in a post-processing step. Our investigation refers to thermal imprint as the post-processing step to induce grain growth in perovskite layers, offering the additional benefit of providing a flat surface for multi-layer devices. The material studied is MAPbBr3; we investigate grain growth at a pressure of 100 bar and temperatures of up to 150 °C, a temperature range where the pressurized stamp is beneficial to avoid thermal degradation. Grain coarsening develops in a self-similar way, featuring a log-normal grain size distribution; categories like ‘normal’ or ‘secondary’ growth are less applicable as the layers feature a preferential orientation already before imprint-induced grain growth. The experiments are simulated with a capillary-based growth law; the respective parameters are determined experimentally, with an activation energy of Q ≈ 0.3 eV. It turns out that with imprint as well the main parameter relevant to grain growth is temperature; to induce grain growth in MAPbBr3 within a reasonable processing time a temperature of 120 °C and beyond is advised. An analysis of the mechanical situation during imprint indicates a dominance of thermal stress. The minimization of elastic energy and surface energy together favours the development of grains with (100)-orientation in MaPbBr3 layers. Furthermore, the experiments indicate that the purity of the materials used for layer preparation is a major factor to achieve large grains; however, a diligent and always similar preparation of the layer is equally important as it defines the pureness of the resulting perovskite layer, intimately connected with its capability to grow. The results are not only of interest to assess the potential of a layer with respect to grain growth when specific temperatures and times are chosen; they also help to rate the long-term stability of a layer under temperature loading, e.g. during the operation of a device.


Sign in / Sign up

Export Citation Format

Share Document