Faculty Opinions recommendation of BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth.

Author(s):  
Adrienne Roeder ◽  
Mingyuan Zhu
Keyword(s):  
Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


2016 ◽  
Vol 5 (04) ◽  
pp. 4958
Author(s):  
Dulal De

Hymenachne acutigluma (Steud.) Gilliland, a robust rhizomatous perennial grass spreads on moist and swampy land and also floating in water. Being a grass species, they do not have any cambium for secondary growth. A peculiarity in stem anatomy especially the spongy pith of secondary tissues found in absence of the cambium. The origin and development of the parenchymatous pith tissues has been investigated in the present study. Economically this spongy pith is of very much potent for its high absorbing and filtering capacity and also used as a good fodder.


2021 ◽  
pp. 125853
Author(s):  
Vicente Rozas ◽  
Ana I. García-Cervigón ◽  
Miguel García-Hidalgo ◽  
Erik Rodríguez-García ◽  
José M. Olano

2021 ◽  
Vol 127 (9) ◽  
Author(s):  
Andre Mayer ◽  
Tobias Haeger ◽  
Manuel Runkel ◽  
Johannes Rond ◽  
Johannes Staabs ◽  
...  

AbstractThe quality and the stability of devices prepared from polycrystalline layers of organic–inorganic perovskites highly depend on the grain sizes prevailing. Tuning of the grain size is either done during layer preparation or in a post-processing step. Our investigation refers to thermal imprint as the post-processing step to induce grain growth in perovskite layers, offering the additional benefit of providing a flat surface for multi-layer devices. The material studied is MAPbBr3; we investigate grain growth at a pressure of 100 bar and temperatures of up to 150 °C, a temperature range where the pressurized stamp is beneficial to avoid thermal degradation. Grain coarsening develops in a self-similar way, featuring a log-normal grain size distribution; categories like ‘normal’ or ‘secondary’ growth are less applicable as the layers feature a preferential orientation already before imprint-induced grain growth. The experiments are simulated with a capillary-based growth law; the respective parameters are determined experimentally, with an activation energy of Q ≈ 0.3 eV. It turns out that with imprint as well the main parameter relevant to grain growth is temperature; to induce grain growth in MAPbBr3 within a reasonable processing time a temperature of 120 °C and beyond is advised. An analysis of the mechanical situation during imprint indicates a dominance of thermal stress. The minimization of elastic energy and surface energy together favours the development of grains with (100)-orientation in MaPbBr3 layers. Furthermore, the experiments indicate that the purity of the materials used for layer preparation is a major factor to achieve large grains; however, a diligent and always similar preparation of the layer is equally important as it defines the pureness of the resulting perovskite layer, intimately connected with its capability to grow. The results are not only of interest to assess the potential of a layer with respect to grain growth when specific temperatures and times are chosen; they also help to rate the long-term stability of a layer under temperature loading, e.g. during the operation of a device.


2005 ◽  
Vol 5 (11) ◽  
pp. 2989-3002 ◽  
Author(s):  
P. Guyon ◽  
G. P. Frank ◽  
M. Welling ◽  
D. Chand ◽  
P. Artaxo ◽  
...  

Abstract. As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency). Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2), which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF) for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC) fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL) to the cloud detrainment layer (CDL) and the free troposphere (FT) was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol particles released in the CDL and FT were larger than in the unprocessed smoke, mostly due to coagulation and secondary growth, and therefore more efficient at scattering radiation and nucleating cloud droplets. This process may have significant atmospheric implications on a regional and larger scale.


1956 ◽  
Vol 23 (1) ◽  
pp. 120-125 ◽  
Author(s):  
J. Czulak ◽  
Jill Naylor

A lysogenic culture, prepared in the laboratory from a strain of Streptococcus lactis, was used as a cheese starter in commercial factories. It was attacked in turn by two other unrelated phage races. The lysogenic condition, which involved slight morphological and physiological changes, persisted in the subsequent forms resistant to one or both the new phage races. Acquired resistance to any one of the three phages did not protect the culture from the other two phages.In nature such interactions between phage races and lactic acid bacteria must be constantly taking place, giving rise to similarly related strains.Two of the three phage races produced spreading haloes around their plaques due to a lysin released during phage action. The lysin may also interfere with the survival of secondary growth after attack by these phage races. Production of this type of lysin is thus a property of the phage race and not of the bacterial strain.


Sign in / Sign up

Export Citation Format

Share Document