scholarly journals Curcumin analog CUR5–8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity

Metabolism ◽  
2020 ◽  
Vol 103 ◽  
pp. 154015 ◽  
Author(s):  
Eun Soo Lee ◽  
Mi-Hye Kwon ◽  
Hong Min Kim ◽  
Ho Bum Woo ◽  
Chan Mug Ahn ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1894 ◽  
Author(s):  
Xiaobing Zhang ◽  
Yunfei Song ◽  
Yipei Ding ◽  
Wei Wang ◽  
Ling Liao ◽  
...  

Obesity and nonalcoholic fatty liver disease (NAFLD) are highly prevalent and cause numerous metabolic diseases. However, drugs for the prevention and treatment of obesity and NAFLD remain unavailable. In this study, we investigated the effects of mogrosides (luo han guo, LH) in Siraitia grosvenorii saponins on high-fat-diet-induced obesity and NAFLD in mice. We found that compared with the negative control, LH reduced body and liver weight. LH also decreased fat accumulation and increased AMP-activated protein kinase (AMPK) phosphorylation (pAMPK) levels in mouse livers. We also found that high-purity mogroside V upregulated pAMPK expression in HepG2 cells. In addition, high-purity mogroside V inhibited reactive oxygen species production and upregulated sequestosome-1 (SQSTM1, p62) expression in THP-1 cells. These results suggest that LH may affect obesity and NAFLD by enhancing fat metabolism and antioxidative defenses. Mogroside V may be a main component of LH. However, the exact molecular mechanisms and active components responsible for the inhibitory effects of LH on obesity and NAFLD require further investigation.


Aging ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 8960-8974
Author(s):  
Xiaoli Qian ◽  
Ting Wang ◽  
Jiahong Gong ◽  
Li Wang ◽  
Xuyan Chen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Doo Jin Choi ◽  
Seong Cheol Kim ◽  
Gi Eun Park ◽  
Bo-Ram Choi ◽  
Dae Young Lee ◽  
...  

The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) mice. Forty-eight mice were randomly divided into eight groups and orally administered daily for 6 weeks with a normal diet (ND) or high fat diet alone (HFD), HFD with AM (HFD + 100 mg/kg AM extract), HFD with LE (HFD + 100 mg/kg LE extract), HFD with ALM16 (HFD + 50, 100, and 200 mg/kg ALM16), or HFD with MT (HFD + 100 mg/kg Milk thistle extract) as a positive control. ALM16 significantly decreased the body and liver weight, serum and hepatic lipid profiles, including triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL), and low-density lipoprotein-cholesterol (LDL), and serum glucose levels, compared to the HFD group. Moreover, ALM16 significantly ameliorated the HFD-induced increased hepatic injury markers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT)-1. Furthermore, as compared to the mice fed HFD alone, ALM16 increased the levels of phosphorylated AMP-activated protein kinase (p-AMPK) and acetyl-CoA carboxylase (p-ACC), thereby upregulating the expression of carnitine palmitoyltransferase (CPT)-1 and downregulating the expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS). These results demonstrated that ALM16 markedly inhibited HFD-induced hepatic steatosis in NAFLD mice by modulating AMPK and ACC signaling pathways, and may be more effective than the single extracts of AM or LE.


Sign in / Sign up

Export Citation Format

Share Document